Skip to main content
Log in

Theoretical and Experimental Study of the Acid Corrosion Inhibition of Copper by Aspirin (Acetylsalicylic Acid)

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The inhibition efficiency of aspirin (acetylsalicylic acid-ASA) against copper corrosion was investigated in 0.5 M HCl solution at room temperature by using electrochemical techniques. Furthermore some quantum chemical calculations were done to explain the inhibition mechanism of ASA. It was found that ASA has a promising inhibitory action against corrosion of copper in the medium investigated. The polarization curves of ASA were obtained from electrochemical measurements. According to potentiodynamic results, ASA inhibits the corrosion process of the copper cathodically and its ability as a corrosion inhibitor is enhanced as its concentration is increased. The Tafel extrapolation method was used to calculate some corrosion parameters, such as corrosion potential (Ecorr), corrosion current (Icorr), cathodic Tafel slope (βc) and anodic Tafel slope (βa). Additionally, Langmuir adsorption isotherm was used to explain the adsorption behavior of ASA on copper surface. The adsorption equilibrium constant (Kads) and the standard free energy of adsorption (\(\Delta G_{{{\text{ads}}}}^{^\circ }\)) were calculated from Langmuir adsorption isotherm. It can be concluded that the adsorption of ASA on the copper surface contains mostly physisorption but also chemisorption thereby it is so called a mixed. The quantum chemical calculations have been performed on ASA for neutral and protonated forms by using density functional theory (DFT) in gas and aqeuous phases to explain the behavior of ASA as a corrosion inhibitor. These calculated quantum chemical parameters were compared to each other and the relationship between calculated parameters and corrosion inhibition mechanism of ASA is analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Syrett, B.C., Corrosion, 1976, vol. 32, p. 242

    Article  CAS  Google Scholar 

  2. Zor, S., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 4, p. 530.

    Article  CAS  Google Scholar 

  3. Yu, P., Liao, D.-M., Luo, Y.-B., and Chen Z.-G., Corrosion, 2003, vol. 59, p. 314.

    Article  CAS  Google Scholar 

  4. Qafsaoui, W., Blanc, C., Pebere, N., Takenouti, H., Srhiri, A., and Mankowski, G., Electrochim. Acta, 2002, vol. 47, p. 4339

    Article  CAS  Google Scholar 

  5. da Costa, S.L.F.A., Agostinho, S.M.L., and Nobe, K., J. Electrochem. Soc., 1993, vol. 140, p. 3483.

    Article  CAS  Google Scholar 

  6. Lewis, G., Corros. Sci., 1982, vol. 22, p. 579.

    Article  CAS  Google Scholar 

  7. Zucchi, F., Trabanelli, G., and Fonsati, M., Corros. Sci., 1996, vol. 38, p. 2019.

    Article  CAS  Google Scholar 

  8. Popova, I. and Yates, J.T., Langmuir, 1997, vol. 13, p. 6169.

    Article  CAS  Google Scholar 

  9. Ismail, K.M., Electrochim. Acta, 2007, vol. 52, no. 28, p. 7811.

    Article  CAS  Google Scholar 

  10. Singh, A. and Quraishi, M., Corros. Sci., 2010, vol. 52, p. 152.

    Article  CAS  Google Scholar 

  11. Kayadibi, F., Sagdinc, S.G., and Kaya, Y.S., Prot. Met. Phys. Chem. Surf., 2016, vol. 51, p. 143.

    Article  CAS  Google Scholar 

  12. Ahamad, I., Prasad, R., and Quraishi, M.A., Corros. Sci., 2010, vol. 52, p. 3033.

    Article  CAS  Google Scholar 

  13. Karthik, G. and Sundaravadivelu, M., Egypt.J. Pet., 2016, vol. 25, no. 2, p. 183.

    Google Scholar 

  14. Durnie, W., De Marco, R., Jefferson, A., and Kinsella, B., J. Electrochem. Soc., 1999, vol. 146, p. 1751.

    Article  CAS  Google Scholar 

  15. Sulaiman, K.O. and Onawole, A.T., Comput. Theor. Chem., 2016, vol. 1093, p. 73.

    Article  CAS  Google Scholar 

  16. Glaser, R., J. Org. Chem., 2001, vol. 66, p.771.

    Article  CAS  Google Scholar 

  17. Prasanna, B.M., Praveen, B.M., Narayan Hebbar, Venkatesha, T.V., Tandon, H.C., and Abd Hamid, S.B., J.Assoc. Arab Univ. Basic Appl. Sci., 2017, vol. 22, p. 62.

    Google Scholar 

  18. Jaguar, Version 8.0, New York: Schrödinger, 2011.

  19. Maestro, Version 9.2, New York: Schrödinger, 2011.

  20. Wheatley, P.J., J. Chem. Soc., 1964, vol. 1163, p. 6036.

    Article  Google Scholar 

  21. Cambridge Crystallographic Data Base, Cambridge: Cambridge Crystallographic Data Center.

  22. Ditchfield, R., Hehre, W.J., and Pople, J.A., J. Chem. Phys., 1971, vol. 54, p. 724.

    Article  CAS  Google Scholar 

  23. Hehre, W.J. and Pople, J.A., J. Chem. Phys., 1972, vol. 56, p. 4233.

    Article  CAS  Google Scholar 

  24. Binkley, J. and Pople, J., J. Chem. Phys., 1977, vol. 66, p. 879.

    Article  CAS  Google Scholar 

  25. Slater, J., Quantum Theory of Molecules and Solids. The Self-Consistent Field for Molecules and Solids, New York: McGraw-Hill, 1974.

    Book  Google Scholar 

  26. Vosko, S., Wilk, L., and Nusair, M., Can. J. Phys., 1980, vol. 58, p. 1200.

    Article  CAS  Google Scholar 

  27. Perdew, J., Phys. Rev. B, 1986, vol. 33, p. 8822.

    Article  CAS  Google Scholar 

  28. Tannor, D., Marten, B., Murphy, R., et al., J. Am. Chem. Soc., 1994, vol. 116, p. 11875.

    Article  CAS  Google Scholar 

  29. Marten, B., Kim, K., Cortis, C., et al., J. Phys. Chem., 1996, vol. 100, p. 11775.

    Article  CAS  Google Scholar 

  30. Eddy, N.O. and Ita, B.I., J. Mol. Model., 2011, vol. 17, pp. 359–376.

    Article  CAS  Google Scholar 

  31. Pearson, R., Inorg. Chem., 1988, vol. 27, p. 734.

    Article  CAS  Google Scholar 

  32. Martinez, S., Mater. Chem. Phys., 2002, vol. 77, p. 97.

    Article  Google Scholar 

  33. Zhang, D., Cai, Q., He, X., Gao, L., and Zhou, G., Mater. Chem. Phys., 2008, vol. 112, p. 353.

    Article  CAS  Google Scholar 

  34. Bacarella, L. and Griess, J.C., J. Electrochem. Soc., 1973, vol. 120, p. 459.

    Article  CAS  Google Scholar 

  35. El Adrani, Z., et al., Corros. Sci., 2013, vol. 68, p. 223.

    Article  CAS  Google Scholar 

  36. Thomas, J.G.N., 1981, Ann. Univ. Ferrara, Sez. 5, Suppl., no. 8, p. 453.

    Google Scholar 

  37. Behpour, M., Ghoreishi, S.M., Gandomi-Niasar, A., Soltani, N., and Salavati-Niasari, M., J. Mater. Sci., 2009, vol. 44, p. 2444.

    Article  CAS  Google Scholar 

  38. Bentiss, F., Lebrini, M., and Lagrenée, M., Corros. Sci., 2005, vol. 47, p. 2915.

    Article  CAS  Google Scholar 

  39. Donahue, F.M. and Nobe, K., J. Electrochem. Soc., 1965, vol. 112, p. 886.

    Article  CAS  Google Scholar 

  40. Kamis, E., Bellucci, F., Latanision, R.M., and El Ashr, E.S.H., Corrosion, 1991, vol. 47, p. 677.

    Article  Google Scholar 

  41. Nataraja, S.E., Venkatesha, T.V., and Tandon, H.C., Corros. Sci., 2012, vol. 60, p. 214.

    Article  CAS  Google Scholar 

  42. Obi-Egbedi, N. and Obot, I., Corros. Sci., 2011, vol. 53, p. 263.

    Article  CAS  Google Scholar 

  43. Hengliang Wang, Xueye Wang, Hanlu Wang, Ling Wang, and Aihong Liu, J. Mol. Model., 2007, vol. 13, p. 147.

    Article  CAS  Google Scholar 

  44. Ebenso, E.E., Isabirye, D.A., and Eddy, N.O., Int. J. Mol. Sci., 2010, vol. 11, p. 2473.

    Article  CAS  Google Scholar 

  45. Parr, R.G., Szetpàly, L.V., and Liu, S., J. Am. Chem. Soc., 1999, vol. 121, p. 1922.

    Article  CAS  Google Scholar 

  46. Ju, H., Kai, Z.P., and Li, Y., Corros. Sci., 2008, vol. 50, p. 865.

    Article  CAS  Google Scholar 

  47. Lukovits, I., Kalman, E., and Zucchi, F., Corrosion, 2001, vol. 57, p. 3.

    Article  CAS  Google Scholar 

  48. Laarej, K., Bouachrine, M., Radi, S., Radi, S., Kertit S., and Hammouti, B., E-J. Chem., 2010, vol. 7, no. 2, p. 419.

    Article  CAS  Google Scholar 

  49. Fuentealba, P., Perez, P., and Contreras, R., J. Chem. Phys., 2000, vol. 113, p. 2544.

    Article  CAS  Google Scholar 

  50. Murray, J.S., Seminario, J.M., Politzer, P., and Sjoberg, P., Int. J. Quantum Chem., 1990, vol. 38, no. S24, p. 645.

    Article  Google Scholar 

  51. Politzer, P., Abu-Awwad, F., and Murray, J.S., Int. J. Quantum Chem., 1998, vol. 69, p. 607.

    Article  CAS  Google Scholar 

  52. Bulat, F.A., Toro-Labbé, A., Brinck, T., Murray, J.S., and Politzer, P., J. Mol. Model., 2010, vol. 16, p. 1679.

    Article  CAS  Google Scholar 

  53. Politzer, P., Murray, J.S., and Bulat, F.A., J. Mol. Model., 2010, vol. 16, p. 1731.

    Article  CAS  Google Scholar 

  54. Mulliken, R.S., J. Chem. Phys., 1955, vol. 23, p. 1833.

    Article  CAS  Google Scholar 

  55. Chattaraj, P.K., Malti, B., and Sarkar, U., J. Phys. Chem. A, 2003, vol. 107, p. 4973.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the Kocaeli University Research Fund for its financial support (grant no. 2012/069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayadibi, F., Sagdinc, S. & Zor, S. Theoretical and Experimental Study of the Acid Corrosion Inhibition of Copper by Aspirin (Acetylsalicylic Acid). Prot Met Phys Chem Surf 56, 202–213 (2020). https://doi.org/10.1134/S2070205120010104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120010104

Keywords:

Navigation