Skip to main content
Log in

Electrochemical oxidation assessment and interaction of 2-aminoethanol and N, N-diethylethanamine propagation in acidic medium

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Electro-oxidation and inhibitor performance of copper specimens in 1 M hydrochloric acid solution was investigated at room temperature by linear potentiodynamic polarization and gravimetric method in the presence of 2-aminoethanol (A) and N, N-diethylethanamine (D) as an inorganic inhibitor. The effect of the inhibitory concentration on the corrosion behavior of copper was studied over 288 hrs at 298°K. The inhibitory efficiency rise up to 96% for single induced and 98% for synergistic behavior. The adsorption mechanism characteristic was supported by SEM/EDX analysis and adsorption isotherm. From all indication, the inhibitive efficiency of these compounds majorly depends on their molecular structure and concentration. The blocking effects of the surface interface were also explained on the basis of the inhibitor active action. 2-aminoethanol and N, N-diethylethanamine inhibits copper in 1 M HCl by strictly affecting both the anodic and cathodic sites. Portion of the surface covered calculated was also found to follow Langmuir adsorption isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonijevic, M.M. and Petrovic, M.B., Int. J. Electrochem. Sci., 2012, vol. 3, p. 1.

    Article  Google Scholar 

  2. Trachli, B., Keddam, M., Takenouti, H., and Srhiri, A., Science, 2002, vol. 44, p. 997.

    Google Scholar 

  3. Deslouis, C., Tribollet, B., Mengoli, G., and Musiani, M.M., J. Appl. Electrochem., 1988, vol. 18, p. 374.

    Article  Google Scholar 

  4. Shim, J.J. and Kim, J.G., Mater. Lett., 2004, vol. 58, p. 2002.

    Article  Google Scholar 

  5. Mountassir, Z. and Srhiri, A., Corros. Sci., 2007, vol. 49, p. 1350.

    Article  Google Scholar 

  6. Reitmeier, R.E, Sivertz, V., and Tartar, H.V., J. Am. Chem. Soc., 1940, vol. 62, p. 1943.

    Article  Google Scholar 

  7. Otmacic, H., Telegdi, J., Papp K., and StupnisekLisac, E., J. Appl. Electrochem., 2004, vol. 34, p. 545.

    Article  Google Scholar 

  8. Bartley, J., Huynh, N., Bottle, S.E., et al., Corros. Sci., 2003, vol. 45, p. 81.

    Article  Google Scholar 

  9. Abdulwahab, M, Popoola, A.P.I., and Fayomi, O.S.I., Int. J. Electrochem. Sci., 2012, vol. 7, p. 11706.

    Google Scholar 

  10. Libralato, G., Volpi Ghirardini, A., and Avezzù, F., J. Hazard Mater., 2009, vol. 176, p. 535.

    Article  Google Scholar 

  11. Rodrigues, P.R.P., Aoki, I.V., De Andrade, A.H.P., et al., Br. Corros. J., 1996, vol. 31, p. 305.

    Article  Google Scholar 

  12. Frignani, A., Tommesani, L., Brunoro, G., et al., Corros. Sci., 1999, vol. 41, p. 1205.

    Article  Google Scholar 

  13. Rodrigues, P.R.P., Zerbino, J.O., and Agostinho, S.M.L., Mater. Sci. Forum., 1998, vol. 289, p. 1299.

    Article  Google Scholar 

  14. Popoola, A.P.I, Abdulwahab, M., and Fayomi, O.S.J., Int. J. Electrochem. Sci., 2012, vol. 7, p. 5805.

    Google Scholar 

  15. Bentiss, F., Bouanis, M., Mernari, B., et al., Appl. Surf. Sci., 2007, vol. 253, p. 3696.

    Article  Google Scholar 

  16. Li, W., He, Q., Pei, C., and Hou, B., Electrochem. Acta, 2007, vol. 52, p. 6386.

    Article  Google Scholar 

  17. Wang, L., Corros. Sci., 2006, vol. 48, p. 608.

    Article  Google Scholar 

  18. Kosec, T., Milošev I., and Pihlar B., Appl. Surf. Sci., 2007, vol. 253, p. 8863.

    Article  Google Scholar 

  19. Otieno-Alego, V., Hope, G.A., Notoya, T., and Schweinsberg, D.P., Corros. Sci., 1996, vol. 38, p. 213.

    Article  Google Scholar 

  20. Schweinsberg, D.P., Bottle, S.E., Otieno-Alego, V., and Notoya, T., J. Appl. Electrochem., 1997, vol. 27, p. 161.

    Article  Google Scholar 

  21. Ma, H., Chen, S., Niu, L., et al., J. Appl. Electrochem., 2002, vol. 32, p. 65.

    Article  Google Scholar 

  22. Abdulwahab, M., Kasim, A., Fayomi, O.S.I., et al., J. Mater. Environ. Sci., 2012, vol. 3, p. 1177.

    Google Scholar 

  23. Ehteram, A.N. and Aisha, H.A., Int. J. Electrochem. Sci., 2008, vol. 98, p. 806.

    Google Scholar 

  24. Fayomi, O.S.I. and Popoola, A.P.I., Res. J. Chem Environ., 2008, vol. 17, p. 99.

    Google Scholar 

  25. Satpati, A.K. and Ravindran, P.V., Mat. Chem. Phys., 2008, vol. 109, p. 352.

    Article  Google Scholar 

  26. Fayomi, O.S.I., Popoola, A.P.I., Abdulwahab, M., and Popoola, O.M., Int. J. Res. Eng. Soc. Sci., 2012, vol. 2, p. 13.

    Google Scholar 

  27. Mountassir, Z. and Srhiri, A., Corros. Sci., 2007, vol. 49, p. 1350.

    Article  Google Scholar 

  28. Itagaki, M., Tagaki, M., and Watanabe, K., Corros. Sci., 1996, vol. 38, p. 1109.

    Article  Google Scholar 

  29. Tromans, D. and Silva, J.C., Corros. Sci., 1997, vol. 53, p. 171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. I. Fayomi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayomi, O.S.I., Popoola, A.P.I. Electrochemical oxidation assessment and interaction of 2-aminoethanol and N, N-diethylethanamine propagation in acidic medium. Prot Met Phys Chem Surf 51, 891–898 (2015). https://doi.org/10.1134/S2070205115050081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205115050081

Keywords

Navigation