Skip to main content
Log in

Influence of oxide layer on carbon diffusion during anode plasma electrolytic carburizing

  • New Substances, Materials, and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This study is devoted to the effect of the oxide layer formed upon anodic plasma-electrolytic carburization on the rate of carbon diffusion in low carbon steels upon application of an aqueous solution of ammonium chloride with glycerol as a working electrolyte. Approximate determinations of carbon distribution in the surface layer of low carbon steels after their anodic plasma-electrolytic carburizing confirmed the hypothesis that there is deceleration of carbon diffusion by the oxide layer. Different structures of the oxide layer were revealed that depend on the method of sample cooling after their saturation with carbon in an anodic vapor-gas envelope. A possibility of controlling the thickness of the oxide layer was shown, as well as clarification of the surface by the choice of an electrolyte and treatment mode, was shown. A reduction in the roughness of the carburized surface from 0.62 ± 0.02 to 0.22 ± 0.02 μm was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yerokhin, A.L., Nie, X., Leyland, A., et al., Surf. Coat. Technol., 1999, vol. 122, p. 73.

    Article  Google Scholar 

  2. Suminov, I.V., Belkin, P.N., Epel’fel’d, A.V., et al., Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov. Tom I (Plasma-electrolytic Modification of Metal and Alloy Surface. Volume I), Moscow: Tekhnosfera, 2011, p. 464.

    Google Scholar 

  3. Roy, A., Tewari, R.K., Sharma, R.C., et al., Surf. Eng., 2007, vol. 23, no. 4, p. 243.

    Article  Google Scholar 

  4. Nie, X., Wang, L., Yao, Z.C., et al., Surf. Coat. Technol., 2005, vol. 200, nos. 5–6, p. 1745.

    Article  Google Scholar 

  5. Shen, D.J., Wang, Y.L., Nash, P., et al., Mater. Sci. Eng., A, 2007, vol. 458, p. 240.

    Article  Google Scholar 

  6. Nie, X., Tsotsos, C., Wilson, A., et al., Surf. Coat. Technol., 2001, vol. 139, nos. 2–3, p. 135.

    Article  Google Scholar 

  7. Taheri, P. and Dehghanian, Ch., Sci. Iran., Trans. B, 2009, vol. 16, no. 1, p. 87.

    Google Scholar 

  8. Aliofkhazraei, M., Sabour Rouhaghdam, A., and Gupta, P., Crit. Rev. Solid State Mater. Sci., 2011, vol. 36, p. 174.

    Article  Google Scholar 

  9. Pang, H., Zhang, G.-L., Wang, X.-Q., et al., Chin. Phys. Lett., 2011, vol. 28, no. 11, p. 118103.

    Article  Google Scholar 

  10. Tarakci, M., Korkmaz, K., Gencer, Y., et al., Surf. Coat. Technol., 2005, vol. 199, nos. 2–3, p. 205.

    Article  Google Scholar 

  11. Bejar, M.A. and Henriquez, R., Mater. Des., 2009, vol. 30, p. 1726.

    Article  Google Scholar 

  12. Belkin, P.N., Dyakov, I.G., and Zhirov, A.V., et al., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 6, p. 715.

    Article  Google Scholar 

  13. Belkin, P.N., Surf. Eng. Appl. Electrochem., 2010, vol. 46, no. 6, p. 558.

    Article  Google Scholar 

  14. Chernova, G.P., Bogdashkina, A.L., Parshutin, V.V., et al., Zashch. Met., 1984, vol. 20, no. 3, p. 408.

    Google Scholar 

  15. Revenko, V.G., Chernova, G.P., Tomashov, N.D., et al., Zashch. Met., 1988, vol. 24, no. 2, p. 204.

    Google Scholar 

  16. Apelfeld, A.V., Bespalova, O.V., Borisov, A.M., et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 2000, vol. 161-163, p. 553.

    Article  Google Scholar 

  17. Romanovsky, E.A., Bespalova, O.V., Borisov, A.M., et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2000, vol. 15, p. 851.

    Google Scholar 

  18. Bespalova, O.V., Borisov, A.M., Vostrikov, V.G., et al., Phys. At. Nucl., 2009, vol. 72, no. 10, p. 1664.

    Article  Google Scholar 

  19. Allen, P.L. and Hickling, A., Trans. Faraday Soc., 1957, vol. 53, no. 8, p. 1626.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kusmanov.

Additional information

Original Russian Text © S.A. Kusmanov, P.N. Belkin, I.G. D’yakov, A.V. Zhirov, T.L. Mukhacheva, A.R. Naumov, 2014, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2014, Vol. 50, No. 2, pp. 198–204.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusmanov, S.A., Belkin, P.N., D’yakov, I.G. et al. Influence of oxide layer on carbon diffusion during anode plasma electrolytic carburizing. Prot Met Phys Chem Surf 50, 223–229 (2014). https://doi.org/10.1134/S2070205114020099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205114020099

Keywords

Navigation