Skip to main content
Log in

Topology of nanometric graphite films

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This work submits the results of a study in which the combinational scattering (CS) spectroscopy and electronic and optical microscopy of nanometric single-crystal graphite films obtained by precipitating in gas phase were used. It is shown the graphite material samples synthesized in this manner are fine, highly streamlined films that grow alongside of the substrate surface. The films feature a fairly smooth surface and thicknesses of 100-1 atomic layers. The study of the topologic properties of the material, such as the formation of folds along the entire surface and the occurrence of waveform ripples on some surface areas, showed that they may appear due to large differences in the carbon film and nickel substrate thermal expansion factors. The film thickness was assessed for the observed parameters of the periodic structures and the results comply with data obtained using other techniques. In some areas of the material in study, the graphene layers spontaneously split and form bubbles. The results of the CS analysis of various bubbles on studied film surfaces are evidence that, similar to the film itself, the walls of bubbles are composed of different numbers of graphite layers. It is shown that transparent bubbles in which meshlike topology is observed are formed with a single atomic layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mermin, N.D., Phys. Rev., 1968, vol. 176, p. 25.

    Article  ADS  Google Scholar 

  2. Novoselov, K.S., Geim, A.K., Jiang, D., et al., Science, 2004, vol. 306, p. 666.

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Meyer, J.C., Geim, A.K., Katsnelson, M.I., et al., Nature, 2007, vol. 446, p. 60.

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Geim, A.K. and Novoselov, K.S., Nature materials, 2007, vol. 6, p. 183.

    Article  PubMed  ADS  CAS  Google Scholar 

  5. Zolotukhin, A.A., Obraztsov, A.N., Ustinov, A.O., et al., Zh. Eksp. Teor. Fiz., 2003, vol. 124, p. 1291.

    Google Scholar 

  6. Obraztsov, A.N., Zolotukhin, A.A., Ustinov, A.O., et al., Carbon, 2003, vol. 41, p. 836.

    Article  CAS  Google Scholar 

  7. Tyurnina, A.V., Zolotukhin, A.A., and Obraztsov, A.N., Pis’ma Zh. Tekh. Fiz., 2006, vol. 32, p. 1 [Tech. Phys. Lett. (Engl. Transl.), vol. 32, p.].

    Google Scholar 

  8. Obraztsov, A.N., Obraztsova, E.A., Tyurnina, A.V., et al., Carbon, 2007, vol. 45, p. 2017.

    Article  CAS  Google Scholar 

  9. Grilikhe, S.Ya., Obezzhirivanie, travlenie i polirovanie metallov. Izd. 5-e (Metals Degreasing, Etching and Polishing), Leningrad: Mashinostroenie, 1983.

    Google Scholar 

  10. Grigor’eva, I.S. and Meilikhova, E.Z., Spravochnik. Fizicheskie velichiny (Physical Values. Guide), Moscow: Energoatomizdat, 1991.

    Google Scholar 

  11. Kollie, T.G., Phys. Rev. B:, 1977, vol. 16, p. 4872.

    Article  ADS  CAS  Google Scholar 

  12. Fujita, D., Kumakura, T., Onishi, K., et al., Surf. Sci., 2004, vol. 566–568, p. 361.

    Article  Google Scholar 

  13. Nyapshaev, I.A., Titkov, A.N., Tyurnina, A.V., et al., // Fizika tverdogo tela (Solid State Physics) (in press).

  14. Obraztsov, A.N., Obraztsova, E.A., Zolotukhin, A.A., et al., Zh. Eksp. Teor. Fiz., 2008, vol. 133, no. 3, p. 654.

    Google Scholar 

  15. Obraztsov, A.N., Tyurnina, A.V., Obraztsova, E.A., et al., Carbon, 2008, vol. 46, p. 963.

    Article  CAS  Google Scholar 

  16. Ferrari, A., Solid State Communications, 2007, vol. 143, p. 47.

    Article  ADS  CAS  Google Scholar 

  17. Ferrari, A., Meyer, J.C., Scardaci, V., et al., Phys. Rev. Lett., 2006, vol. 97, p. 187401.

    Article  PubMed  ADS  CAS  Google Scholar 

  18. Volynskii, A.L., Bazhenov, S., and Lebedeva, O.V., J. Appl. Polym. Sci., 1999, vol. 72, p. 1267.

    Article  CAS  Google Scholar 

  19. Volynskii, A.L., Priroda (Moscow, Russ. Fed.), 2007, no. 9, p. 14.

  20. Volynskii, A.L., Moiseeva, S.V., and Yarysheva, L.M., Dokl. Phys. Chem, 2006, vol. 409, p. 179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tyurnina.

Additional information

Original Russian Text © A.V. Tyurnina, D.V. Serov, A.N. Obraztsov, 2009, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2009, Vol. 45, No. 5, pp. 505–508.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyurnina, A.V., Serov, D.V. & Obraztsov, A.N. Topology of nanometric graphite films. Prot Met Phys Chem Surf 45, 558–561 (2009). https://doi.org/10.1134/S2070205109050104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205109050104

PACS numbers

Navigation