Skip to main content
Log in

Effect of Water-Soluble Polymers on the Dynamics of Carbon Dioxide Sorption by Lime-Based Sorbents

  • GENERAL PROBLEMS OF CATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

This study concerns the effect of water-soluble polymers with different structures on the sorption properties of unregenerable lime-based sorbents of carbon dioxide. It is shown that introducing water-soluble polymers into the composition of sorbents can either prolong or shorten the periods of their protective effect. To explain these findings, the porous structure of sorbents is studied, the transport of carbon dioxide is modeled using molecular dynamics, and coefficients of the diffusion of СО2 in water–polymer solutions are calculated. Modelling results correlate with data from sorption experiments: a stronger dynamic sorption capacity is obtained for a sorbent when a water–polymer medium with a greater coefficient of СО2 diffusion is added. These results can be used to optimize systems for separating carbon dioxide from gaseous mixtures and intensify mass transfer in systems for the photo- and electrocatalytic conversion of СО2 into useful products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Udara Willhelm Abeydeera, L.H., Wadu Mesthrige, J., and Samarasinghalage, T.I., Sustainability, 2019, vol. 11, no. 14, article no. 3972. https://doi.org/10.3390/su11143972

    Article  Google Scholar 

  2. Ameyaw, B., Yao, L., Oppong, A., and Agyeman, J.K., Energy Policy, 2019, vol. 130, pp. 7–21. https://doi.org/10.1016/j.enpol.2019.03.056

    Article  CAS  Google Scholar 

  3. Gao, J., Hou, H., Zhai, Y., Woodward, A., Vardoulakis, S., Kovats, S., Wilkinson, P., Li, L., Song, X., Xu, L., Meng, B., Liu, X., Wang, J., Zhao, J., and Liu, Q., Environ. Pollut., 2018, vol. 240, pp. 683–698. https://doi.org/10.1016/j.envpol.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  4. Fasihi, M., Efimova, O., and Breyer, C., J. Cleaner Prod., 2019, vol. 224, pp. 957–980. https://doi.org/10.1016/j.jclepro.2019.03.086

    Article  CAS  Google Scholar 

  5. Vega, F., Baena-Moreno, F.M., Gallego Fernández, L.M., Portillo, E., Navarrete, B., and Zhang, Z., Appl. Energy, 2020, vol. 260, article no. 114313. https://doi.org/10.1016/j.apenergy.2019.114313

    Article  CAS  Google Scholar 

  6. Varghese, A.M. and Karanikolos, G.N., Int. J. Greenhouse Gas Control, 2020, vol. 96, article no. 103005. https://doi.org/10.1016/j.ijggc.2020.103005

    Article  CAS  Google Scholar 

  7. Lee, J.-Y., Park, C.-Y., Moon, S.-Y., Choi, J.-H., Chang, B.-J., and Kim, J.-H., J. Membr. Sci., 2019, vol. 589, article no. 117214. https://doi.org/10.1016/j.memsci.2019.117214

    Article  CAS  Google Scholar 

  8. Salih, H.A., Pokhrel, J., Reinalda, D., AlNashf, I., Khaleel, M., Vega, L.F., Karanikolos, G.N., and Abu Zahra, M., Int. J. Greenhouse Gas Control, 2021, vol. 110, article no. 103415. https://doi.org/10.1016/j.ijggc.2021.103415

    Article  CAS  Google Scholar 

  9. Yu, W., Wang, T., Park, A.A., and Fang, M., Nanoscale, 2019, vol. 11, no. 37, pp. 17137–17156. https://doi.org/10.1039/C9NR05089B

    Article  CAS  PubMed  Google Scholar 

  10. Devendiran, D.K. and Amirtham, V.A., Renewable Sustainable Energy Rev., 2016, vol. 60, pp. 21–40. https://doi.org/10.1016/j.rser.2016.01.055

    Article  CAS  Google Scholar 

  11. Kuehnel, M. F., Orchard, K.L., Dalle, K.E., and Reisner, E., J. Am. Chem. Soc., 2017, vol. 139, no. 21, pp. 7217–7223. https://doi.org/10.1021/jacs.7b00369

    Article  CAS  PubMed  Google Scholar 

  12. Resasco, J. and Bell, A.T., Trends Chem., 2020, vol. 2, no. 9, pp. 825–836. https://doi.org/10.1016/j.trechm.2020.06.007

    Article  CAS  Google Scholar 

  13. Olmeda, B., Villén, L., Cruz, A., Orellana, G., and Perez-Gil, J., Biochim. Biophys. Acta, Biomembr., 2010, vol. 1798, no. 6, pp. 1281–1284. https://doi.org/10.1016/j.bbamem.2010.03.008

    Article  CAS  Google Scholar 

  14. Derevschikov, V.S., Kazakova, E.D., Yatsenko, D.A., and Veselovskaya, J.V., Sep. Sci. Technol., 2021, vol. 56, no. 3, pp. 485–497. https://doi.org/10.1080/01496395.2020.1723029

    Article  CAS  Google Scholar 

  15. Derevshchikov, V.S. and Kazakova, E.D., Catal. Ind., 2020, vol. 12, no. 1, pp. 1–6. https://doi.org/10.1134/S2070050420010043

    Article  Google Scholar 

  16. Gladyshev, N.F., Gladysheva, T.V., Putin, B.V., and Putin, S.B., Izvestkovye poglotiteli novogo pokoleniya (Lime-Based Sorbents of New Generation), Moscow: Spektr, 2012.

  17. Gladysheva, T.V., Gladyshev, N.F., Dvoretskii, S.I., and Suvorova, Yu.A., Izvestkovye khemosorbenty: poluchenie, svoistva, primenenie (Lime-Based Chemosorbents: Synthesis, Properties, Application), Moscow: Spektr, 2015.

  18. Yurkevich, A.A., Ivakhnyuk, G.K., and Fedorov, N.F., Tekhnologicheskie osnovy proizvodstva khimicheskikh komponentov sistem zhizneobespecheniya (Technological Principles for the Production of Chemical Components for Life Support Systems), St. Petersburg: Mendeleev, 2014.

  19. Ivakhnyuk, G.K., Kozhina, T.G., Samonin, V.V., Fedorov, N.F., and Slesareva, M.O., Zh. Prikl. Khim., 1991, vol. 64, no. 3, pp. 578–582.

    CAS  Google Scholar 

  20. Samonin, V.V., Kruglikova, I.V., and Fedorov, N.F., Zh. Prikl. Khim., 1994, vol. 67, no. 2, pp. 300–302.

    CAS  Google Scholar 

  21. Koreshonkova, M.O., Ivakhnyuk, G.K., Krylov, V.K., and Malinin, V.R., Zh. Prikl. Khim., 1997, vol. 70, no. 10, pp. 1743–1744.

    Google Scholar 

  22. Murray, J.M., Renfrew, C.W., Bedi, A., McCrystal, C.B., Jones, D.S., and Fee, J.P., Anesthesiology, 1999, vol. 91, no. 5, pp. 1342–1348. https://doi.org/10.1097/00000542-199911000-00026

    Article  CAS  PubMed  Google Scholar 

  23. Derevshchikov, V.S., Kazakova, E.D., Veselovskaya, J.V., Yatsenko, D.A., and Kozlov, D.V., Russ. J. Phys. Chem. A, 2021, vol. 95, no. 7, pp. 1455–1460. https://doi.org/10.1134/S0036024421070098

    Article  CAS  Google Scholar 

  24. Lowell, S., Shields, J.E., Thomas, M.A., and Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, New York: Springer, 2004. https://doi.org/10.1007/978-1-4020-2303-3

    Book  Google Scholar 

  25. Oostenbrink, C., Villa, A., Mark, A.E., and Van Gunsteren, W.F., J. Comput. Chem., 2004, vol. 25, no. 13, pp. 1656–1676. https://doi.org/10.1002/jcc.20090

    Article  CAS  PubMed  Google Scholar 

  26. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G., J. Chem. Phys., 1995, vol. 103, no. 19, pp. 8577–8593. https://doi.org/10.1063/1.470117

    Article  CAS  Google Scholar 

  27. Parrinello, M. and Rahman, A., J. Appl. Phys., 1981, vol. 52, no. 12, pp. 7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  28. Hoover, W.G., Phys. Rev. A, 1985, vol. 31, no. 3, pp. 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  29. ALOthman, Z.A., Materials, 2012, vol. 5, no. 12, pp. 2874–2902. https://doi.org/10.3390/ma5122874

    Article  CAS  PubMed Central  Google Scholar 

  30. Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Penicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K., Pure Appl. Chem., 1994, vol. 66, no. 8, pp. 1739–1758. https://doi.org/10.1351/pac199466081739

    Article  CAS  Google Scholar 

  31. Lange, K.R., Surfactants: A Practical Handbook, Munich: Hanser Publishers/Cincinnati, OH: Hanser Gardner, 1999.

    Google Scholar 

  32. Danckwerts, P.V., Gas-Liquid Reactions, New York: McGraw-Hill, 1970.

    Book  Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Science and Higher Education as part of a state task for the Boreskov Institute of Catalysis, project no. AAAA-A21-121011390054-1 (0239-2021-0010). Our molecular dynamics modelling was supported in part by the RF Ministry of Science and Higher Education as part of a state task for the Voevodsky Institute of Chemical Kinetics and Combustion, project no. 0304-2017-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Derevshchikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derevshchikov, V.S., Selyutina, O.Y. Effect of Water-Soluble Polymers on the Dynamics of Carbon Dioxide Sorption by Lime-Based Sorbents. Catal. Ind. 15, 325–332 (2023). https://doi.org/10.1134/S2070050423040062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050423040062

Keywords:

Navigation