Skip to main content
Log in

New Ways of Controlling the Molecular Mass Characteristics and Distribution of Branches for Polyethylene Synthesized over Supported Catalysts Containing Fe(II) Bis(imino)pyridyl and Ni(II) Bis(imine) Complexes

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Data on the ways of controlling the molecular structure of polyethylene (PE) synthesized over the supported catalysts containing Fe(II) bis(imino)pyridyl (LFeCl2) and Ni(II) bis(imine) (*LNiBr2) complexes immobilized on a silica gel modified with aluminum oxide (SiO2(Al)) are presented. Linear polyethylene with different molecular masses and a controllable molecular weight distribution (MWD) is synthesized by varying the conditions of polymerization on LFeCl2/SiO2(Al) catalysts. Ethylene homopolymerization over *LNiBr2/SiO2(Al) catalysts results in branched polyethylene with molecular mass and thermophysical characteristics close to that of low density polyethylene synthesized by ethylene copolymerization with α-olefins over supported metallocene and Ziegler type catalysts. A way for designing supported bicomponent catalysts containing LFeCl2 and *LNiBr2 complexes immobilized on an SiO2(Al) support for the targeted synthesis of polyethylene with a required molecular structure is proposed. Examples are given for the synthesis of linear polyethylene with a bimodal MWD on a bicomponent supported catalyst containing two different LFeCl2 complexes, the synthesis of polyethylene with a controllable distribution of branches on a bicomponent catalyst prepared via the immobilization of LFeCl2 and *LNiBr2 complexes on a SiO2(Al) support, and the modification of a chromium oxide catalyst with LFeCl2 complex for controlling the molecular mass and branch distributions in synthesized polyethylene are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Britovsek, G.J.P., Gibson, V.C., Kimberley, B.S., Maddox, P.J., McTavish, S.J., Solan, G.A., White, A.J.P., and Williams, D.J., Chem. Commun., 1998, vol. 7, pp. 849–850. https://doi.org/10.1039/A801933I

    Article  Google Scholar 

  2. Small, B.L., Brookhart, M., and Bennet, A.M.A., J. Am. Chem. Soc., 1998, vol. 120, no. 16, pp. 4049–4050. https://doi.org/10.1021/ja9802100

    Article  CAS  Google Scholar 

  3. Britovsek, G.J.P., Bruce, M., Gibson, V.C., Kimberley, B.S, Maddox, P.J., Mastroianni, S., McTavish, S.J., Redshaw, C., Solan, G.A., Strömberg, S., White A.J.P., and Williams, D.J., J. Am. Chem. Soc., 1999, vol. 121, no. 38, pp. 8728–8740. https://doi.org/10.1021/ja990449w

    Article  CAS  Google Scholar 

  4. Gibson, V.C., Redshaw, C., and Solan, G.A., Chem. Rev., 2007, vol. 107, no. 5, pp. 1745–1776. https://doi.org/10.1021/cr068437y

    Article  CAS  PubMed  Google Scholar 

  5. Luo, H.-K., Yang, Z.-H., Mao, B.-Q., Yu, D.-S., and Tang, R.-G., J. Mol. Catal. A: Chem., 2002, vol. 177, no. 2, pp. 195–207. https://doi.org/10.1016/S1381-1169(01)00275-8

    Article  CAS  Google Scholar 

  6. Radhakrishnan, K., Cramail, H., Deffieux, A., François, Ph., and Momtaz, A., Macromol. Rapid Commun., 2003, vol. 24, no. 3, pp. 251–254. https://doi.org/10.1002/marc.200390036

    Article  CAS  Google Scholar 

  7. Bryliakov, K.P., Talsi, E.P., Semikolenova, N.V., and Zakharov, V.A., Organometallics, 2009, vol. 28, no. 11, pp. 3225–3232. https://doi.org/10.1021/om8010905

    Article  CAS  Google Scholar 

  8. Tondreau, A.M., Mismann, C., Patrick, A.D., Hout, H.M., Lobkovsky, E., Wieghardt, K., and Chink, P.J., J. Am. Chem. Soc., 2010, vol. 132, no. 42, pp. 15046–15059. https://doi.org/10.1021/ja106575b

    Article  CAS  PubMed  Google Scholar 

  9. Sun, W.-H., Zhao, W., Yu, J., Zhang, W., Hao, X., and Redshaw, C., Macromol. Chem. Phys., 2012, vol. 213, no. 12, pp. 1266–1273. https://doi.org/10.1002/macp.201200051

    Article  CAS  Google Scholar 

  10. Semikolenova, N.V., Sun, W.-H., Soshnikov, I.E., Matsko, M.A., Kolesova, O.V., Zakharov, V.A., and Bryliakov, K.P., ACS Catal., 2017, vol. 7, no. 4, pp. 2868–2877. https://doi.org/10.1021/acscatal.7b00486

    Article  CAS  Google Scholar 

  11. Wang, Z., Solan, G.A., Zhang, W., and Sun, W.-H., Coord. Chem. Rev., 2018, vol. 363, pp. 92–108. https://doi.org/10.1016/j.ccr.2018.02.016

    Article  CAS  Google Scholar 

  12. Johnson, L.K., Killian, C.M., and Brookhart, M., J. Am. Chem. Soc., 1995, vol. 117, no. 23, pp. 6414–6415. https://doi.org/10.1021/ja00128a054

    Article  CAS  Google Scholar 

  13. Killan, C.M., Johnson, L.K., and Brookhart, M., Organometallics, 1997, vol. 16, no. 10, pp. 2005–2007. https://doi.org/10.1021/om961057q

    Article  Google Scholar 

  14. Ittel, S.D., Johnson, L.K., and Brookhart, M., Chem. Rev., 2000, vol. 100, no. 4, pp. 1169–1203. https://doi.org/10.1021/cr9804644

    Article  CAS  PubMed  Google Scholar 

  15. Gibson, V.C. and Spitzmesser, S.K., Chem. Rev., 2003, vol. 103, no. 1, pp. 283–315. https://doi.org/10.1021/cr980461r

    Article  CAS  PubMed  Google Scholar 

  16. Bianchini, C., Giambastiani, G., Luconi, L., and Meli, A., Coord. Chem. Rev., 2010, vol. 254, nos. 5–6, pp. 431–455. https://doi.org/10.1016/j.ccr.2009.07.013

  17. Delferro, M. and Marks, T.J., Chem. Rev., 2011, vol. 111, no. 3, pp. 2450–2485. https://doi.org/10.1021/cr1003634

    Article  CAS  PubMed  Google Scholar 

  18. Mu, H., Pan, L., Song, D., and Li, Y., Chem. Rev., 2015, vol. 115, no. 22, pp. 12091–12137. https://doi.org/10.1021/cr500370f

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Z., Liu, Q., Solan, G.A., and Sun, W.-H., Coord. Chem. Rev., 2017, vol. 350, pp. 68–83. https://doi.org/10.1016/j.ccr.2017.06.003

    Article  CAS  Google Scholar 

  20. Suo, H., Solan, G.A., Ma, Y., and Sun, W.-H., Coord. Chem. Rev., 2018, vol. 372, pp. 101–116. https://doi.org/10.1016/j.ccr.2018.06.006

    Article  CAS  Google Scholar 

  21. Sun, W.-H., Zhang, D., Zhang, S., Jie, S., and Hou, J., Kinet. Catal., 2006, vol. 47, no. 2, pp. 278–283. https://doi.org/10.1134/S0023158406020194

    Article  CAS  Google Scholar 

  22. Huang, C., Zeng, Y., Flisak, Z., Zhao, Z., Liang, T., and Sun, W.-H., J. Polym. Sci., Part A: Polym. Chem., 2017, vol. 55, no. 12, pp. 2071–2083. https://doi.org/10.1002/pola.28595

    Article  CAS  Google Scholar 

  23. Mahmood, Q. and Sun, W.-H., R. Soc. Open Sci., 2018, vol. 5, no. 7, article no. 180367. https://doi.org/10.1098/rsos.180367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, H., Zhao, W., Hao, X., Redshaw, C., Huang, W., and Sun, W.-H., Organometallics, 2011, vol. 30, no. 8, pp. 2418–2424. https://doi.org/10.1021/om200154a

    Article  CAS  Google Scholar 

  25. Kong, S., Guo, C.-Y., Yang, W., Wang, L., Sun, W.-H., and Glaser, R., J. Organomet. Chem., 2013, vol. 725, pp. 37–45. https://doi.org/10.1016/j.jorganchem.2012.12.009

    Article  CAS  Google Scholar 

  26. Fan, L., Du, S., Guo, C.-Y., Hao, X., and Sun, W.-H., J. Polym. Sci., Part A: Polym. Chem., 2015, vol. 53, no. 11, pp. 1369–1378. https://doi.org/10.1002/pola.27572

    Article  CAS  Google Scholar 

  27. Wang, X., Fan, L., Ma, Y., Guo, C., Solan, G.A., Sun, Y., and Sun, W.-H., Polym. Chem., 2017, vol. 8, no. 18, pp. 2785–2795. https://doi.org/10.1039/C7PY00434F

    Article  CAS  Google Scholar 

  28. Mahmood, Q., Zeng, Y., Yue, E., Solan, G.A., Liang, T., and Sun, W.-H., Polym. Chem., 2017, vol. 8, no. 41, pp. 6416–6430. https://doi.org/10.1039/C7PY01606A

    Article  CAS  Google Scholar 

  29. Wu, R., Wang, Y., Zhang, R., Guo, C.-Y., Flisak, Z., Sun, Y., and Sun, W.-H., Polymer, 2018, vol. 153, pp. 574–586. https://doi.org/10.1016/j.polymer.2018.08.056

    Article  CAS  Google Scholar 

  30. Wu, R., Wang, Y., Guo, L., Guo, C.-Y., Liang, T., and Sun, W.-H., J. Polym. Sci., Part A: Polym. Chem., 2019, vol. 57, no. 2, pp. 130–145. https://doi.org/10.1002/pola.29277

    Article  CAS  Google Scholar 

  31. Semikolenova, N.V., Zakharov, V.A., Talsi, E.P., Babushkin, D.E., Sobolev, A.P., Echevskaya, L.G., and Khusniyarov, M.M., J. Mol. Catal. A: Chem., 2002, vols. 182–183, pp. 283–294. https://doi.org/10.1016/S1381-1169(01)00476-9

  32. Semikolenova, N.V., Zakharov, V.A., Paukshtis, E.A., and Danilova, I.G., Top. Catal., 2005, vol. 32, nos. 1–2, pp. 77–82. https://doi.org/10.1007/s11244-005-9262-3

  33. Panchenko, V.N., Semikolenova, N.V., Danilova, I.G., Paukshtis, E.A., and Zakharov, V.A., Kinet. Catal., 1999, vol. 40, no. 4, pp. 556–561.

    CAS  Google Scholar 

  34. Semikolenova, N.V., Panchenko, V.N., Paukshtis, E.A., Matsko, M.A., and Zakharov, V.A., Mol. Catal., 2020, vol. 486, article no. 110878. https://doi.org/10.1016/j.mcat.2020.110878

    Article  CAS  Google Scholar 

  35. Semikolenova, N.V., Panchenko, V.N., Matsko, M.A., and Zakharov, V.A., Polyolefins J., 2022, vol. 9, no. 2, pp. 103–116. https://doi.org/10.22063/poj.2022.3072.1208

    Article  CAS  Google Scholar 

  36. Huang, Ch., Zakharov, V.A., Semikolenova, N.V., Matsko, M.A., Mahmood, Q., Talsi, E.P., and Sun, W.-H., J. Catal., 2019, vol. 372, pp. 103–108. https://doi.org/10.1016/j.jcat.2019.02.027

    Article  CAS  Google Scholar 

  37. Matsko, M.A., Semikolenova, N.V., Zakharov, V.A., Soshnikov, I.E., Shundrina, I.K., and Sun, W.-H., J. Appl. Polym. Sci., 2021, vol. 138, no. 20, article no. 50436. https://doi.org/10.1002/app.50436

    Article  CAS  Google Scholar 

  38. Kaul, F.A.R., Puchta, G.T., Schneider, H., Bielert, F., Mihalios, D., and Herrmann, W.A., Organometallics, 2002, vol. 21, no. 1, pp. 74–82. https://doi.org/10.1021/om000939t

    Article  CAS  Google Scholar 

  39. Ma, Z., Sun, W.-H., Zhu, N., Li, Z., Shao, Ch., and Hu, Y., Polym. Int., 2002, vol. 51, no. 4, pp. 349–352. https://doi.org/10.1002/pi.853

    Article  CAS  Google Scholar 

  40. Ma, Z., Ke, Y., Wang, H., Guo, C., Zang, M., Sun, W.-H., and Hu, Y., J. Appl. Polym. Sci., 2003, vol. 88, no. 2, pp. 466–469. https://doi.org/10.1002/app.11749

    Article  CAS  Google Scholar 

  41. Schmidt, R., Welch, M.B., Palackal, S.J., and Alt, H.G., J. Mol. Catal. A: Chem., 2002, vol. 179, nos. 1–2, pp. 155–173. https://doi.org/10.1016/S1381-1169(01)00333-8

  42. Ray, S. and Sivaram, S., Polym. Int., 2006, vol. 55, no. 8, pp. 854–861. https://doi.org/10.1002/pi.2020

    Article  CAS  Google Scholar 

  43. Gibson, V.C., Redshaw, C., and Solan, G.A., Chem. Rev., 2007, vol. 107, no. 5, pp. 1745–1776. https://doi.org/10.1021/cr068437y

    Article  CAS  PubMed  Google Scholar 

  44. Xiao, T., Zhang, W., Lai, J., and Sun, W.-H., C. R. Chim., 2011, vol. 14, no. 9, pp. 851–855. https://doi.org/10.1016/j.crci.2011.02.004

    Article  CAS  Google Scholar 

  45. Ma, J., Feng, C., Wang, S., Zhao, K.-Q., Sun, W.-H., Redshaw, C., and Solan, G.A., Inorg. Chem. Front., 2014, vol. 1, no. 1, pp. 14–34. https://doi.org/10.1039/C3QI00028A

    Article  CAS  Google Scholar 

  46. Barabanov, A.A., Bukatov, G.D., Zakharov, V.A., Semikolenova, N.V., Mikenas, T.B., Echevskaja, L.G., and Matsko, M.A., Macromol. Chem. Phys., 2006, vol. 207, no. 15, pp. 1368–1375. https://doi.org/10.1002/macp.200600122

    Article  CAS  Google Scholar 

  47. Chen, Y., Chen, R., Qian, Ch., Dong, X., and Sun, J., Organometallics, 2003, vol. 22, no. 21, pp. 4312–4321. https://doi.org/10.1021/om0302894

    Article  CAS  Google Scholar 

  48. Mahmood, Q., Zeng, Y., Wang, X., Sun, Y., and Sun, W.-H., Dalton Trans., 2017, vol. 46, no. 21, pp. 6934–6947. https://doi.org/10.1039/C7DT01295K

    Article  CAS  PubMed  Google Scholar 

  49. Sun, J., Wang, F., Li, W., and Chen, M., RSC Adv., 2017, vol. 7, no. 87, pp. 55051–55059. https://doi.org/10.1039/C7RA11783C

    Article  CAS  Google Scholar 

  50. RF Patent 2289591, 2006.

  51. Matsko, M.A., Vanina, M.P., Echevskaya, L.G., and Zakharov, V.A., J. Therm. Anal. Calorim., 2013, vol. 113, no. 2, pp. 923–932. https://doi.org/10.1007/s10973-012-2773-9

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of a State Task from the RF Ministry of Science and Higher Education for the Boreskov Institute of Catalysts, project no. AAAA-A21-121011490008-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mats’ko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mats’ko, M.A., Semikolenova, N.V. & Zakharov, V.A. New Ways of Controlling the Molecular Mass Characteristics and Distribution of Branches for Polyethylene Synthesized over Supported Catalysts Containing Fe(II) Bis(imino)pyridyl and Ni(II) Bis(imine) Complexes. Catal. Ind. 15, 267–277 (2023). https://doi.org/10.1134/S2070050423030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050423030066

Keywords:

Navigation