Skip to main content
Log in

Formation of nanosized bimetallic particles based on noble metals

  • Catalysis and Nanotechnologies
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Methods for the preparation of nanosized alloys from noble metals by decomposition of monomolecular precursors are described, and the results of these studies are reported. Other aspects of the synthesis procedure and properties of bimetallic nanostructures are also considered. Thermolysis of noble metal compounds led to the formation of an ultradisperse powder of their alloys. This method affords catalysts with a uniform distribution of active particles. Nanosized particles of a number of alloys in hydrogen and inert media were prepared. The optimum parameters of the reduction of complex compounds (gas medium, thermolysis temperature, heating rate, and annealing time) were determined to obtain ultradisperse powders with the required particle size, phase composition, and structure. For Co-Pt and Pt-Pd systems, bimetallic catalysts deposited on γ-Al2O3 and Sibunit can be obtained; these catalysts show higher activity in selective oxidation of CO compared with monometallic catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rapallo, A., Rossi, G., Ferrando, R., et al., J. Chem. Phys., 2005, vol. 122, no. 19, p. 13.

    Article  Google Scholar 

  2. Karpov, S.V. and Slabko, V.V., Opticheskie i fotofizicheskie svoistva fraktal’no-strukturirovannykh zolei metallov (Optical and Photophysical Properties of Fractal Structured Metal Sols), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2003.

    Google Scholar 

  3. Gleiter, H., Nanostruct. Mater., 1995, vol. 6, nos. 1–4, p. 3.

    Article  CAS  Google Scholar 

  4. Deivaraj, T.C., Chen, W.X., and Lee, J.Y., J. Mater. Chem., 2003, vol. 13, no. 10, p. 2555.

    Article  CAS  Google Scholar 

  5. Bol’shakov, A.M., Lapkin, V.V., Bol’shakova, L.D., et al., Zh. Neorg. Khim., 1994, vol. 39, no. 9, p. 1464.

    Google Scholar 

  6. Nashner, M.S., Somerville, D.M., Lane, P.D., et al., J. Am. Chem. Soc., 1996, vol. 118, no. 51, p. 12964.

    Article  CAS  Google Scholar 

  7. Sun, S.H. and Murray, C.B., J. Appl. Phys., 1999, vol. 85, no. 8, p. 4325.

    Article  CAS  Google Scholar 

  8. Tartaj, P., Morales, M.D., Veintemillas-Verdaguer, S., et al., J. Phys. D:Appl. Phys., 2003, vol. 36, no. 13, p. R182.

    Article  CAS  Google Scholar 

  9. Saiyed, Z.M., Telang, S.D., and Ramchand, C.N., Ind. J. Eng. Mat. Sci., 2004, vol. 11, no. 4, p. 358.

    CAS  Google Scholar 

  10. Huang, X.S. and Mashimo, T., J. Alloy. Compd., 2003, vol. 361, nos. 1–2, p. 118.

    CAS  Google Scholar 

  11. Valiev, R.Z. and Aleksandrov, I.V., Nanostrukturnye materialy, poluchennye intensivnoi plasticheskoi deformatsiei (Nanostructural Materials Obtained by Active Plastic Deformation), Moscow: Logos, 2000.

    Google Scholar 

  12. Schaak, R.E., Sra, A.K., Leonard, B.M., et al., J. Am. Chem. Soc., 2005, vol. 127, no. 10, p. 3506.

    Article  CAS  Google Scholar 

  13. Ioroi, T. and Yasuda, K., J. Electrochem. Soc., 2005, vol. 152, no. 10, p. A1917.

    Article  CAS  Google Scholar 

  14. Korenev, S.V., Venediktov, A.B., Shubin, Yu.V., et al., Zh. Strukt. Khim., 2003, vol. 44, no. 1, p. 58.

    Google Scholar 

  15. Lu, Y., Mei, Y., Drechsler, M., and Ballauff, M., Abstracts of Papers of the American Chemical Society, 2006, vol. 231, p. 2.

    Google Scholar 

  16. Rao, G.R., Curr. Sci., 1998, vol. 75, no. 9, p. 901.

    CAS  Google Scholar 

  17. Park, J.I. and Cheon, J., J. Am. Chem. Soc., 2001, vol. 123, no. 24, p. 5743.

    Article  CAS  Google Scholar 

  18. Plyusnin, P.E., Baidina, I.A., Shubin, Yu.V., and Korenev, S.V., Zh. Neorg. Khim., 2007, vol. 52, no. 3, p. 421.

    CAS  Google Scholar 

  19. Michelot, B., Ouali, A., Blais, M.J., et al., New J. Chem., 1988, vol. 12, no. 5, p. 293.

    CAS  Google Scholar 

  20. Bol’shakov, L.D., Bol’shakov, A.M., and Sergeeva, O.V., Zh. Neorg. Khim., 2000, vol. 45, no. 8, p. 1322.

    Google Scholar 

  21. Garnier, E., Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 1993, vol. 49, p. 578.

    Article  Google Scholar 

  22. Song, H.M., Hong, J.H., Lee, Y.B., et al., Chem. Commun., 2006, no. 12, p. 1292.

  23. Hills, C.W., Nashner, M.S., Frenkel, A.I., et al., Langmuir, 1999, vol. 15, no. 3, p. 690.

    Article  CAS  Google Scholar 

  24. Korenev, S.V., Makotchenko, E.V., Plyusnin, P.E., et al., Izv. Akad. Nauk, Ser. Khim., 2006, p. 416.

  25. Venediktov, A.B., Korenev, S.V., Shubin, Yu.V., et al., Zh. Neorg. Khim., 2003, vol. 48, no. 3, p. 446.

    Google Scholar 

  26. Yusenko, K.V., Gromilov, S.A., Korol’kov, I.V., et al., Zh. Neorg. Khim., 2004, vol. 49, no. 4, p. 568.

    CAS  Google Scholar 

  27. Plyusnin, P.E., Baidina, I.A., Shubin, Yu.V., and Korenev, S.V., Zh. Neorg. Khim., 2005, vol. 50, no. 12, p. 1959.

    CAS  Google Scholar 

  28. Shubin, Yu.V., Filatov, E.Yu., and Baidina, I.A., Zh. Strukt. Khim., 2006, vol. 47, no. 6, p. 1114 [Russ. J. Struct. Chem. (Engl. Transl.), vol. 47, no. 6, p. 1103].

    Google Scholar 

  29. Gromilov, S.A. and Korenev, S.V., Zh. Strukt. Khim., 2002, vol. 43, no. 3, p. 568 [Russ. J. Struct. Chem. (Engl. Transl.), vol. 43, no. 3, p. 527].

    Google Scholar 

  30. Yusenko, K.V., Baidina, I.A., Gromilov, S.A., and Korenev, S.V., Zh. Strukt. Khim., 2007, vol. 48, no. 3, p. 618 [Russ. J. Struct. Chem. (Engl. Transl.), vol. 48, no. 3, p. 578].

    Google Scholar 

  31. Korol’kov, I.V., Gubanov, A.I., Yusenko, K.V., et al., Zh. Strukt. Khim., 2007, vol. 48, no. 3, p. 530 [Russ. J. Struct. Chem. (Engl. Transl.), vol. 48, no. 3, p. 486].

    Google Scholar 

  32. Korenev, S.V., Gromilov, S.A., Gubanov, A.I., and Venediktov, A.B., Koord. Khim., 2003, vol. 29, no. 3, p. 234 [Russ. J. Coord. Chem. (Engl. Transl.), vol. 29, no. 3, p. 219].

    Google Scholar 

  33. Gromilov, S.A. and Korenev, S.V., Korol’kov, I. V, Zh. Strukt. Khim., 2004, vol. 45, no. 3, p. 508 [Russ. J. Struct. Chem. (Engl. Transl.), vol. 45, no. 3, p. 482].

    Google Scholar 

  34. Shubin, Yu.V., Korenev, S.V., Yusenko, K.V., et al., Izv. Akad. Nauk, Ser. Khim., 2002, no. 1, p. 34.

  35. Shubin, Yu.V., Korenev, S.V., and Sharafutdinov, M.R., Izv. Akad. Nauk, Ser. Khim., 2006, p. 1069.

  36. Yusenko, K.V., Filatov, E.Y., Vasil’chenko, D.B., Baidina, I.A., et al., Kristallogr., 2007, vol. 26,Suppl., p. 289.

    Article  Google Scholar 

  37. Sobyanin, V.A., Snytnikov, P.V., Kozlov, D.V., et al., RF Patent, Sposob prigotovleniya nanesennykh polimetallicheskikh katalizatorov (Method for the Preparation of Supported Polymetallic Catalysts).

  38. Snytnikov, P.V., Yusenko, K.V., and Korenev, S.V., Kinet. Katal., 2007, vol. 48, no. 2, p. 292 [Kinet. Catal. (Engl. Transl.), vol. 48, no. 2, p. 276].

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Shubin.

Additional information

Original Russian Text © Yu.V. Shubin, S.V. Korenev, 2010, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shubin, Y.V., Korenev, S.V. Formation of nanosized bimetallic particles based on noble metals. Catal. Ind. 2, 20–25 (2010). https://doi.org/10.1134/S2070050410010034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050410010034

Keywords

Navigation