Skip to main content
Log in

Software System for Modeling Nanosatellites Motion Control Algorithms Using a Planar Air-Bearing Testbed

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

This article describes a software system for algorithms modeling nanosatellite motion control on a laboratory facility with an aerodynamic table. The structure of the program, mathematical models of motion, and algorithms for controlling the motion and navigation of nanosatellite mockups on a plane are described. The software system communicates between the station and onboard computers of the mockups on the table, the mockups receive information on the position on the aerodynamic table based on the results of camera image processing. Before the experiments, preliminary calibration tests are carried out to determine the disturbances acting on the table and estimate the values of the control forces of the actuators. Experiments on the autonomous mockup motion in group flight tasks are conducted on the stand and various approaches to actively remove space debris are tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

Similar content being viewed by others

REFERENCES

  1. T. Rybus and K. Seweryn, “Planar air-bearing microgravity simulators: Review of applications, existing solutions and design parameters,” Acta Astronaut. 120, 239–259 (2016). https://doi.org/10.1016/j.actaastro.2015.12.018

    Article  Google Scholar 

  2. A. Robertson, G. Inalhan, and J. P. How, “Spacecraft formation flying control design for the Orion mission,” in Proc. AIAA Guidance, Navigation, and Control Conference and Exhibit (Portland, OR, 1999), Paper AIAA-99-4266. https://doi.org/10.2514/6.1999-4266

  3. D. S. Ivanov and M. Yu. Ovchinnikov, “Mathematical modeling of multilink system controlled motion,” KIAM Preprint No. 72 (Keldysh Inst. Appl. Math. RAS, Moscow, 2008) [in Russian].

    Google Scholar 

  4. B. E. Tweddle, “Relative computer vision-based navigation for small inspection spacecraft,” in Proc. AIAA Guidance, Navigation, and Control Conference and Exhibit (Portland, OR, 2011), Paper AIAA 2011-6296. https://doi.org/10.2514/6.2011-6296

  5. C. Andrade, R. Ramirez-Mendoza, et al., “Robust control applied towards Rendezvous and Docking,” in Proc. 2009 European Control Conference (ECC’09) (Budapest, Hungary, 2009), pp. 1854–1859. https://doi.org/10.23919/ECC.2009.7074673

  6. G. Di Mauro, M. Schlotterer, et al., “Experimental implementation of SDRE method for autonomous rendezvous and docking maneuvering,” in Proc. 5th Int. Conf. on Spacecraft Formation Flying Missions and Technologies (SFFMT 2013) (München, Deutschland, 2013), pp. 1–15.

  7. G. Guglieri, F. Maroglio, et al., “Design and development of guidance navigation and control algorithms for spacecraft rendezvous and docking experimentation,” Acta Astronaut. 94 (1), 395–408 (2014). https://doi.org/10.1016/j.actaastro.2013.02.010

    Article  Google Scholar 

  8. R. Bevilacqua, M. Romano, F. Curti, et al., “Guidance navigation and control for autonomous multiple spacecraft assembly: Analysis and experimentation,” Int. J. Aerosp. Eng. 2011, 308245 (2011). https://doi.org/10.1155/2011/308245

    Article  Google Scholar 

  9. F. Curti, M. Romano, and R. Bevilacqua, “Lyapunov-based thrusters’ selection for spacecraft control: Analysis and experimentation,” J. Guid. Control Dyn. 33 (4), 1143–1160 (2010). https://doi.org/10.2514/1.47296

    Article  Google Scholar 

  10. N. Uyama, H. Nakanishi, K. Nagaoka, and K. Yoshida, “Impedance-based contact control of a free-flying space robot with a compliant wrist for non-cooperative satellite capture,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012) (Vilamoura-Algarve, Portugal, 2012), pp. 4477–4482. https://doi.org/10.1109/IROS.2012.6386082

  11. Z. Zhao, J. Zhao, and H. Liu, “Development of a landing mechanism for asteroids with soft surface,” Int. J. Aerosp. Eng. 2013, 873135 (2013). https://doi.org/10.1155/2013/873135

    Article  Google Scholar 

  12. T. Rybus, “Point-to-point motion planning of a free-floating space manipulator using the rapidly-exploring random trees (RRT) method,” Robotica 38 (6), 957–982 (2020). https://doi.org/10.1017/S0263574719001176

    Article  Google Scholar 

  13. D. Bindel, D. S. Ivanov, et al., “Mock-up position and orientation determination system based on tht block of inertial sensors and star tracker,” KIAM Preprint No. 24 (Keldysh Inst. Appl. Math. RAS, Moscow, 2011) [in Russian].

    Google Scholar 

  14. M. Sabatini, G. B. Palmerini, et al., “Image based control of the “PINOCCHIO” experimental free flying platform,” Acta Astronaut. 94 (1), 480–492 (2014). https://doi.org/10.1016/j.actaastro.2012.10.037

    Article  Google Scholar 

  15. R. Oshana, “Overview of embedded systems and real-time systems,” in DSP Software Development Techniques for Embedded and Real-Time Systems (Elsevier, Amsterdam, 2006), pp. 19–34. https://doi.org/10.1016/B978-075067759-2/50004-1

  16. P. Tsiotras, “ASTROS: A 5DOF experimental facility for research in space proximity operations,” in Guidance, Navigation, and Control 2014, Ed. by A. J. May, Advances in the Astronautical Sciences 151, 717–730 (2014).

  17. M. D. Koptev, N. N. Proshunin, and D. S. Ivanov, “Motion determination of microsatellite control system mock-ups on aerodynamic testbed using monocular vision,” KIAM Preprint No. 109 (Keldysh Inst. Appl. Math. RAS, Moscow, 2015) [in Russian].

    Google Scholar 

  18. SPUTNIX: Russian Private Space Company. URL: https://sputnix.ru/en/. Cited June 24, 2022.

  19. S. Garrido-Jurado, R. Muñoz-Salinas, et al., “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Pattern Recognit. 47 (6), 2280–2292 (2014). https://doi.org/10.1016/j.patcog.2014.01.005

    Article  Google Scholar 

  20. D. Ivanov, M. Koptev, Y. Mashtakov, et al., “Determination of disturbances acting on small satellite mock-up on air bearing table,” Acta Astronaut. 142, 265–276 (2018). https://doi.org/10.1016/j.actaastro.2017.11.010

    Article  Google Scholar 

  21. S. V. Barabash, D. S. Ivanov, M. Yu. Ovchinnikov, and S. S. Tkachev, “Balloon payload attitude control system,” KIAM Preprint No. 15 (Keldysh Inst. Appl. Math. RAS, Moscow, 2010).

    Google Scholar 

  22. M. Haghshenas Jaryani, “An effective manipulator trajectory planning with obstacles using virtual potential field method,” in Proc. 2007 IEEE International Conference on Systems, Man and Cybernetics (SMC 2007) (Montreal, Canada, 2007), pp. 1573–1578. https://doi.org/10.1109/ICSMC.2007.4413685

  23. M. R. Akhloumadi, D. Ivanov, and F. Kozin, “Comparison of relative motion control algorithms for point capturing of space debris object,” in Proc. 72nd International Astronautical Congress (IAC) (Dubai, United Arab Emirates, 2021), Paper IAC-21-A6.5.3, pp. 1–10.

  24. D. Ivanov, M. Ovchinnikov, et al., “Simulation and laboratory testing of the 3U CubeSat control in the proximity of space debris,” in Proc. 71st International Astronautical Congress (IAC) (CyberSpace Edition, 2020), Paper IAC-20.A6.5.5, pp. 1–10.

  25. D. Ivanov, F. Kozin, and M. Akhloumadi, “Laboratory study of control algorithms for debris removal using CubeSat,” in Fifth IAA Conference on University Satellite Missions and CubeSat Workshop 2020, Ed. by F. Graziani, Advances in the Astronautical Sciences, Vol. 173 (2020), pp. 101–117.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Kozin.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozin, F.A. Software System for Modeling Nanosatellites Motion Control Algorithms Using a Planar Air-Bearing Testbed. Math Models Comput Simul 15, 384–400 (2023). https://doi.org/10.1134/S2070048223030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223030109

Keywords:

Navigation