Skip to main content
Log in

Combined Numerical Model of Tsunami

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A numerical model describing the dynamics of the surface gravity waves and acoustic waves induced in the ocean by small dynamic deformations of the bottom is developed. The model is based on the linear potential theory. The model represents a combination of two dynamically coupled blocks: deep-water and shallow. The deep-water block solves a three-dimensional problem of potential wave theory in the sigma-spherical coordinates; the shallow block solves a two-dimensional problem of shallow water theory in the spherical coordinates. The results of testing the numerical model using the analytical solution of the problem for the flat horizontal bottom are presented. A comparative analysis of the simulation results of tsunamis on November 15, 2006 and January 13, 2007 on the Central Kuril Islands with the use of the newly developed and conventional long-wave models is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. V. Titov, F. I. Gonzalez, H. O. Mofjeld, and A. J. Venturato, “NOAA time Seattle tsunami mapping project: procedures, data sources, and products,” NOAA Tech. Memorandum OAR PMEL-124 (2003).

  2. F. Imamura, A. C. Yalciner, and G. Ozyurt, Tsunami Modelling Manual (TUNAMI Model) (2006).

    Google Scholar 

  3. A. I. Zaytsev, A. G. Chernov, A. C. Yalciner, E. N. Pelinovsky, and A. A. Kurkin, MANUAL Tsunami Simulation/Visualization Code NAMI DANCE, vers. 4.9 (2010).

  4. O. V. Bulatov and T. G. Elizarova, “Regularized shallow water equations for numerical simulation of flows with a moving shoreline,” Comput. Math. Math. Phys. 56, 661–679 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. A. Nosov, “Tsunami waves of seismic origin: the modern state of knowledge,” Izv. Atmos. Ocean. Phys. 50, 474–484 (2014).

    Article  Google Scholar 

  6. F. I. González and E. A. Kulikov, “Tsunami dispersion observed in the deep ocean,” in Tsunamis in the World (Springer, Netherlands, 1993), pp. 7–16.

    Google Scholar 

  7. S. Glimsdal, G. K. Pedersen, C. B. Harbitz, and F. Løvholt, “Dispersion of tsunamis: does it really matter?,” Nat. Hazards Earth Syst. Sci. 13, 1507–1526 (2013).

    Article  Google Scholar 

  8. S. Watada, S. Kusumoto, and K. Satake, “Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic earth,” J. Geophys. Res. Solid Earth 119, 4287–4310 (2014).

    Article  Google Scholar 

  9. B. W. Levin and M. A. Nosov, Physics of Tsunamis, 2nd ed. (Springer, Cham, Heidelberg, New York, Dordrecht, London, 2016).

    Book  Google Scholar 

  10. P. A. Madsen, R. Murray, and O. R. Sørensen, “A new form of the Boussinesq equations with improved linear dispersion characteristics,” Coast. Eng. 15, 371–388 (1991).

    Article  Google Scholar 

  11. F. Løvholt, G. Pedersen, and S. Glimsdal, “Coupling of dispersive tsunami propagation and shallow water coastal response,” Open Oceanogr. J. 4, 71-82 (2010).

    Google Scholar 

  12. F. Shi, J. T. Kirby, J. C. Harris, J. D. Geiman, and S. T. Grilli, “A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation,” Ocean Model. 43–44, 36–51 (2012).

    Article  Google Scholar 

  13. J. Kim, G. K. Pedersen, F. Løvholt, and R. J. LeVeque, “A Boussinesq type extension of the GeoClaw model-a study of wave breaking phenomena applying dispersive long wave models,” Coast. Eng. 122, 75–86 (2017).

    Article  Google Scholar 

  14. M. A. Nosov, “Tsunami generation in compressible ocean,” Phys. Chem. Earth, Part B: Hydrol., Oceans Atmos. 24, 437–441 (1999).

    Article  Google Scholar 

  15. G. R. Gisler, “Tsunami simulations,” Ann. Rev. Fluid Mech. 40, 71–90 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Ewing, I. Tolstoy, and F. Press, “Proposed use of the T phase in tsunami warning systems,” Bull. Seismol. Soc. Am. 40, 53–58 (1950).

    Google Scholar 

  17. E. A. Okal, P. J. Alasset, O. Hyvernaud, and F. Schindelé, “The deficient T waves of tsunami earthquakes,” Geophys. J. Int. 152, 416–432 (2003).

    Article  Google Scholar 

  18. M. A. Nosov, S. V. Kolesov, A. V. Ostroukhova, A. B. Alekseev, and B. W. Levin, “Elastic oscillations of the water layer in a tsunami source,” Dokl. Earth Sci. 404, 1097–1100 (2005).

    Google Scholar 

  19. M. A. Nosov and S. V. Kolesov, “Elastic oscillations of water column in the 2003 Tokachi-oki tsunami source: in-situ measurements and 3-D numerical modelling,” Nat. Hazards Earth Syst. Sci. 7, 243–249 (2007).

    Article  Google Scholar 

  20. W. Li, H. Yeh, K. Hirata, and T. Baba, “Ocean-bottom pressure variations during the 2003 Tokachi-Oki Earthquake,” in Nonlinear Wave Dynamics, Ed. by P. Lynett (World Scientic, Singapore, 2009), pp. 109–126.

    Google Scholar 

  21. T. Ohmachi, H. Tsukiyama, and H. Matsumoto, “Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting,” Bull. Seismol. Soc. Am. 91, 1898–1909 (2001).

    Article  Google Scholar 

  22. B. H. Choi, E. Pelinovsky, D. C. Kim, I. Didenkulova, and S. B. Woo, “Two- and three-dimensional computation of solitary wave runup on non-plane beach,” Nonlin. Processes Geophys. 15, 489–502 (2008).

    Article  Google Scholar 

  23. T. Maeda and T. Furumura, “FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion,” Pure Appl. Geophys. 170, 109–127 (2013).

    Article  Google Scholar 

  24. A. Kozelkov, A. Kurkin, E. Pelinovskii, and V. Kurulin, “Modeling the cosmogenic tsunami within the framework of the Navier-Stokes equations with sources of different types,” Fluid Dyn. 50, 306–313 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Bolshakova, S. Inoue, S. Kolesov, H. Matsumoto, M. Nosov, and T. Ohmachi, “Hydroacoustic effects in the 2003 Tokachi-oki tsunami source,” Russ. J. Earth. Sci. 12, ES2005 (2011). https://doi.org/10.2205/2011ES000509

    Article  Google Scholar 

  26. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon, Oxford, 1987; Nauka, Moscow, 1986).

  27. M. A. Nosov, A. V. Moshenceva, and S. V. Kolesov, “Horizontal motions of water in the vicinity of a tsunami source,” Pure Appl. Geophys. 170, 1647–1660 (2013).

    Article  Google Scholar 

  28. M. A. Nosov, A. V. Bolshakova, and S. V. Kolesov, “Displaced water volume, potential energy of initial elevation, and tsunami intensity: analysis of recent tsunami events,” Pure Appl. Geophys. 171, 3515–3525 (2014).

    Article  Google Scholar 

  29. A. F. Blumberg and G. L. Mellor, “A description of a three-dimensional coastal ocean circulation model,” in Three-Dimensional Coastal Ocean Models, Ed. by N. Heaps, Vol. 4 of Coastal and Estuarine Series (Am. Geophys. Union, 1987), pp. 1–16.

    Google Scholar 

  30. M. A. Nosov, “Adapting a mesh when simulating tsunami waves,” Math. Model. Comput. Simul. 10, 431–440 (2018).

    Article  MathSciNet  Google Scholar 

  31. Y. Kaneda, H. Matsumoto, M. A. Nosov, and S. V. Kolesov, “Analysis of pressure and acceleration signals from the 2011 Tohoku earthquake observed by the DONET seafloor network,” J. Disaster Res. 12, 163-175 (2017).

    Article  Google Scholar 

  32. M. A. Nosov, “Tsunami generation in a compressible ocean by vertical bottom motions,” Izv., Atmos. Ocean. Phys. 36, 661–669 (2000).

    Google Scholar 

  33. M. A. Nosov and S. V. Kolesov, “Optimal initial conditions for simulation of seismotectonic tsunamis,” Pure Appl. Geophys. 168, 1223–1237 (2011).

    Article  Google Scholar 

  34. Y. Okada, “Surface deformation due to shear and tensile faults in a half-space,” Bull. Seismol. Soc. Am. 75, 1135-1154 (1985).

    Google Scholar 

  35. M. A. Nosov and K. A. Sementsov, “Calculation of the initial elevation at the tsunami source using analytical solutions,” Izv., Atmos. Ocean. Phys. 50, 539–546 (2014).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project nos. 16-55-50018 and 16-05-00053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nosov.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosov, M.A., Kolesov, S.V. Combined Numerical Model of Tsunami. Math Models Comput Simul 11, 679–689 (2019). https://doi.org/10.1134/S2070048219050156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048219050156

Keywords:

Navigation