Skip to main content
Log in

Density of Tree Wood and Bark in Climatic Gradients of Eurasia

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Under the conditions of climate changing, the biospheric role of forest cover is increasing, as is the relevance of research into the carbon depositing capacity of the world’s forests. These studies include an assessment of the biological productivity of trees and stands, which includes not only phytomass, but also the basic density (BD) of stem wood and bark. In our study, allometric models of the BD of wood and bark of nine forest-forming tree species of Northern Eurasia have been developed, including independent variables such as the tree age and stem diameter, as well as the average temperature of January and average annual precipitation. The structure of a mixed-effects model is applied in which the affiliation of the source data to each of the tree species is encoded by a set of dummy variables. Based on the space-for-time substitution principle, the obtained patterns of BD changes in spatial climatic gradients are used to predict their changes in temporal gradients. The effect of Liebig’s law of limiting factor in predicting BD in spatial and temporal climatic gradients has been confirmed. The revealed patterns of changes in the BD of wood and bark in temperature and precipitation gradients completely repeat the previously established patterns of changes in phytomass and net primary production of trees and stands of Eurasia in the same gradients. This means that the climatic conditionality of the studied indicators of biological productivity has a common nature for both quantitative and qualitative indicators of trees and stands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Andreeva, I.I. and Rodman, L.S., Botanika (Botany), Moscow: KolosS, 2003.

    Google Scholar 

  2. Baskerville, G.L., Use of logarithmic regression in the estimation of plant biomass, Can. J. For. Res., 1972, vol. 2, pp. 49–53.

    Article  Google Scholar 

  3. Billard, A., Bauer, R., Mothe, F., Colin, F., and Longuetaud, F., Vertical variations in wood basic density for two softwood species, Eur. J. For. Res., 2021, vol. 140, pp. 1401–1416.

    Article  Google Scholar 

  4. Bouriaud, O., Leban, J.-M., Bert, D., and Deleuze, C., Intra-annual variations in climate influence growth and wood density of Norway spruce, Tree Physiol., 2005, vol. 25, pp. 651–660.

    Article  CAS  PubMed  Google Scholar 

  5. Castro, V.R., Chambi-Legoas, R., Filho, M.T., Surdi, P.G., Zanuncio, J.C., and Zanuncio, A.J.V., The effect of soil nutrients and moisture during ontogeny on apparent wood density of Eucalyptus grandis, Sci. Rep., 2021, vol. 11, no. 1, p. 2530. https://doi.org/10.1038/s41598-020-59559-2

    Article  CAS  Google Scholar 

  6. Dreiper, N. and Smit, G., Prikladnoi regressionnyi analiz (Applied Regression Analysis), Moscow: Statistika, 1986.

  7. Falster, D.S., Duursma, R.A., Ishihara, M.I., Barneche, D.R., FitzJohn, R.G., Vårhammar, A., Aiba, M., Ando, M., Anten, N., Aspinwall, M.J., Baltzer, J.L., Baraloto, C., Battaglia, M., Battles, J.J., Bond-Lamberty, B., van Breugel, M., Camac, J., Claveau, Y., Coll, L., Dannoura, M., Delagrange, S., Domec, J.-C., Fatemi, F., Feng, W., Gargaglione, V., Goto, Y., Hagihara, A., Hall, J.S., Hamilton, S., Harja, D., Hiura, T., Holdaway, R., Hutley, L.S., Ichie, T., Jokela, E.J., Kantola, A., Kelly, J.W.G., Kenzo, T., King, D., Kloeppel, B.D., Kohyama, T., Komiyama, A., Laclau, J.-P., Lusk, C.H., Maguire, D.A., le Maire, G., Mäkelä, A., Markesteijn, L., Marshall, J., McCulloh, K., Miyata, I., Mokany, K., Mori, S., Myster, R.W., Nagano, M., Naidu, S.L., Nouvellon, Y., O’Grady, A.P., O’Hara, K.L., Ohtsuka, T., Osada, N., Osunkoya, O.O., Peri, P.L., Petritan, A.M., Poorter, L., Portsmuth, A., Potvin, C., Ransijn, J., Reid, D., Ribeiro, S.C., Roberts, S.D., Rodríguez, R., Saldaña-Acosta, A., Santa-Regina, I., Sasa, K., Selaya, N.G., Sillett, S.C., Sterck, F., Takagi, K., Tange, T., Tanouchi, H., Tissue, D., Umehara, T., Utsugi, H., Vadeboncoeur, M.A., Valladares, F., Vanninen, P., Wang, J.R., Wenk, E., Williams, R., Ximenes, F. de Aquino, Yamaba, A., Yamada, T., Yamakura, T., Yanai, R.D., and York, R.A., BAAD: a Biomass And Allometry Database for woody plants, Ecology, 2015, vol. 96, p. 1445.

    Article  Google Scholar 

  8. Fearnside, P.M., Wood density for estimating forest biomass in Brazilian Amazonia, For. Ecol. Manage., 1997, vol. 90, no. 1, pp. 59–89.

    Article  Google Scholar 

  9. Fonti, M.V., Climatic signal in tree ring parameters (wood density, anatomical structure and isotope composition) of coniferous and deciduous tree species in various climatic zones of Eurasia, Extended Abstract of Doctoral (Biol.) Dissertation, Krasnoyarsk: Sib. Fed. Univ., 2020.

  10. Freese, F., Linear Regression Methods for Forest Research, Madison: USDA For. Serv. Res., 1964.

    Google Scholar 

  11. Fu, L.Y., Zeng, W.S., Tang, S.Z., Sharma, R.P., and Li, H.K., Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales – A case study for Masson pine in Southern China, J. For. Sci., 2012, vol. 58, no. 3, pp. 101–115.

    Article  Google Scholar 

  12. Fujimoto, T., Kita, K., and Kuromaru, M., Genetic control of intra-ring wood density variation in hybrid larch (Larix gmelinii var. japonica × L. kaempferi) F1, Wood Sci. Technol., 2008, vol. 42, pp. 227–240.

    Article  CAS  Google Scholar 

  13. Howe, J.P., Relationship of climate to the specific gravity of four Costa Rican hardwoods, an exploratory study, Wood Fiber, 1974, vol. 5, pp. 347–352.

    Google Scholar 

  14. Isaeva, L.N., Method of calculating the local and average density of absolutely dry wood in the trunks of pine and larch, Lesovedenie, 1978, no. 4, pp. 90–94.

  15. Jacobs, M.W. and Cunia, T., Use of dummy variables to harmonize tree biomass tables, Can. J. For. Res., 1980, vol. 10, no. 4, pp. 483–490.

    Article  Google Scholar 

  16. Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn, S., et al., TRY plant trait database—Enhanced coverage and open access, Global Change Biol., 2020, vol. 26, pp. 119–188.

    Article  Google Scholar 

  17. Kellomäki, S., On geoclimatic variation in basic density of Scots pine wood, Silva Fenn., 1979, vol. 13, no. 1, pp. 55–64.

    Google Scholar 

  18. Kerfriden, B., Bontemps, J.-D., and Leban, J.-M., Variations in temperate forest stem biomass ratio along three environmental gradients are dominated by interspecific differences in wood density, Plant Ecol., 2021, vol. 222, no. 3, pp. 289–303.

    Article  Google Scholar 

  19. Lachowicz, H., Bieniasz, A., and Wojtan, R., Variability in the basic density of silver birch wood in Poland, Silva Fenn., 2019, vol. 53, no. 1, p. 9968.

    Article  Google Scholar 

  20. Liepa, I.Y., Dinamika drevesnykh zapasov: Prognozirovanie i ekologiya (Wood Stock Dynamics: Forecast and Ecology), Riga: Zinatne, 1980.

  21. Melekhov, V.I., Babich, N.A., and Korchagov, S.A., Kachestvo drevesiny sosny v kul’turakh (The Quality of Pine Wood in Crops), Arkhangelsk: Arkhangel’sk. Gos. Tekh. Univ., 2003.

  22. Mikola, P., On variations in tree growth and their significance to growth studies, Commun. Inst. For. Fenn., 1950, vol. 38, no. 5, pp. 1–131.

    Google Scholar 

  23. Molteberg, D. and Høibø, O., Modelling of wood density and fibre dimensions in mature Norway spruce, Can. J. For. Res., 2007, vol. 37, no. 8, pp. 1373–1389.

    Article  Google Scholar 

  24. Poluboyarinov, O.I., Plotnost’ drevesiny (The Density of Wood), Moscow: Lesn. Prom-st., 1976.

  25. Saikku, O., The effect of fertilization on the basic density of Scots pine (Pinus silvestris L.). A densitometric study on the X ray chart curves of wood, Commun. Inst. For. Fenn., 1975, vol. 85, no. 3, pp. 1–49.

    Google Scholar 

  26. Sousa, V.B., Louzada, J.L., and Pereira, H., Age trends and within-site effects in wood density and radial growth in Quercus faginea mature trees, For. Syst., 2016, vol. 25, no. 1, p. e053.

    Google Scholar 

  27. St-Germain, J.-L. and Krause, C., Latitudinal variation in tree-ring and wood cell characteristics of Picea mariana across the continuous boreal forest in Quebec, Can. J. For. Res., 2008, vol. 38, no. 6, pp. 1397–1405.

    Article  Google Scholar 

  28. Swenson, N.G. and Enquist, B.J., Ecological and evolutionary determinants of a key plant functional trait: wood density and its community – wide variation across latitude and elevation, Am. J. Bot., 2007, vol. 94, no. 3, pp. 451–459.

    Article  PubMed  Google Scholar 

  29. Télles, J.R.G., Martínez, A.V., de la Rosa, A.B., Grande, J.C., and Mendoza, C.P., Radial variation of basic density in Pinus patula Schltdl. et Cham. in three locations from Hidalgo state, Revista Mexicana de Ciencias Forestales, 2011, vol. 2, no. 7, pp. 71–78.

    Article  Google Scholar 

  30. Usoltsev, V.A., Kvalimetriya fitomassy lesnykh derev’ev: plotnost’ i soderzhanie sukhogo veshchestva: monografiya (Stem Taper, Density and Dry Matter Content in Biomass of Trees Growing in Central Eurasia: Monograph), Yekaterinburg: Ural. Gos. Lesotekh. Univ., Bot. Sad Ural. Otd. Ross. Akad. Nauk, 2020. https://elar.usfeu.ru/handle/123456789/9649

  31. Usoltsev, V.A., Shobairi, S.O.R., Tsepordey, I.S., and Chasovskikh, V.P., On some differences in the response of Picea spp. and Abies spp. single-tree biomass structure to changes in temperatures and precipitation in Eurasia, Environ. Ecol., 2020a, vol. 38, pp. 300—315.

    Google Scholar 

  32. Usoltsev V.A., Shobairi S.O.R., Tsepordey I.S., Chasovskikh V.P. Additive model of aboveground biomass of larch single-trees related to age, DBH and height, sensitive to temperature and precipitation in Eurasia, J. Appl. Sci. Environ. Manage., 2020b, vol. 24, pp. 1759–1766.

    Google Scholar 

  33. Usoltsev, V., Zukow, W., and Tsepordey, I., Climatically determined spatial and temporal changes in the biomass of Pinus sp. of Eurasia in the context of the law of the limiting factor, Ecol. Quest., 2022, vol. 33, no. 1, pp. 1–13. https://doi.org/10.12775/EQ.2022.007

    Article  Google Scholar 

  34. Vieira, J., Carvalho, A., and Campelo, F., Tree growth under climate change: Evidence from xylogenesis timings and kinetics, Front. Plant Sci., 2020, vol. 11, p. 90.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wiemann, M.C. and Williamson, G.B., Geographic variation in wood specific gravity: Effects of latitude, temperature and precipitation, Wood Fiber Sci., 2002, vol. 34, no. 1, pp. 96–107.

    CAS  Google Scholar 

  36. World Weather Maps, 2007. https://www.mapsofworld. com/referrals/weather.

  37. Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B., Swenson, N.G., Wiemann, M.C., and Chave, J., Global wood density database, Dryad, 2009. http://hdl.handle.net/10255/ dryad.235.

  38. Zeng, W.S., Developing tree biomass models for eight major tree species in China, in Biomass Volume Estimation and Valorization for Energy, Intech Publ., 2017, pp. 3–21.

    Google Scholar 

  39. Zhang, L. and Shi, H., Local modeling of tree growth by geographically weighted regression, For. Sci., 2003, vol. 50, no. 2, pp. 225–244.

    Google Scholar 

Download references

Funding

This work was carried out as part of State Task of Botanical Garden of the Ural Branch of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Usoltsev.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usoltsev, V.A., Tsepordey, I.S. Density of Tree Wood and Bark in Climatic Gradients of Eurasia. Contemp. Probl. Ecol. 16, 985–993 (2023). https://doi.org/10.1134/S1995425523070132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523070132

Keywords:

Navigation