Skip to main content
Log in

Emission and Uptake of Greenhouse Gases by Peatland Ecosystems of the Licensed Areas of Salym Oilfield in the Nefteyugansk District of the Khanty-Mansi Autonomous Okrug

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

This paper summarizes the results of field studies on carbon dioxide and methane fluxes in peatland ecosystems in the territory of licensed areas of the Salym group of oilfields (Khanty-Mansi Autonomous Okrug). The largest fluxes of carbon dioxide and methane are observed in mesotrophic and eutrophic peatlands, which are characterized by the maximum of biomass storages. Significant negative CO2 fluxes (‒1161.6 mg CO2 m–2 h–1) associated with photosynthesis have been recorded from here, but they also have a high emission component of carbon exchange (ecosystem respiration) (more than 680 mg CO2 m–2 h–1). Methane emission reaches 23.9 mg CH4 m–2 h–1. In oligotrophic peatlands, fluxes of СО2 range from ‒400 to –600 mg CO2 m–2 h–1 in the daytime and from +160 to +840 mg CO2 m–2 h–1 at night. Up to 1.1 mg CH4 m–2 h–1 is emitted from the elevations of bogs and 3.9 mg CH4 m–2 h–1 from depressions. Large carbon dioxide and methane fluxes were found from rights-of-way at a pine–dwarf-shrub–sphagnum peatland, where, depending on the vegetation cover, the release of CO2 can be from +46 to +480 mg CO2 m–2 h–1 and emission of CH4 can reach 4.6 mg CH4 m–2 h–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Anisimov, O.A., Borshch, S.V., Georgievsky, V.Yu., Insarov, G.E., Kobysheva, N.V., Kostyanoy, A.G., Krenke, A.N., Semenov, S.M., Sirotenko, O.D., Frolov, I.E., Khlebnikova, E.I., Sherstyukov, B.G., Ananicheva, M.D., Anokhin, Yu.A., Asarin, A.E., Asmus, V.V., Bolgov, M.V., Borisova, O.K., Velichko, A.A., Grigoriev, A.V., et al., Metody otsenki posledstvii izmeneniya klimata dlya fizicheskikh i biologicheskikh sistem (Methods for Assessing the Consequences of Climate Change for Physical and Biological Systems), Moscow: Inst. Glob. Klim. Ekol. Ross. Akad. Nauk, 2012.

  2. Bao, T., Jia, G., and Xu, X., Wetland heterogeneity determines methane emissions: A pan-Arctic synthesis, Environ. Sci. Technol., 2021, vol. 55, no. 14, pp. 10152–10163.

  3. Bartlett, K.B., Harriss, R.C., and Sebacher, D.I., Methane flux from coastal salt marshes, J. Geophys. Res., 1985, vol. 90, pp. 5710–5720.

  4. Boch, M.S. and Mazing, V.V., Ekosistemy bolot SSSR (Mire Ecosystems of the USSR), Moscow: Nauka, 1979.

  5. Bukvareva, E.N., Rol nazemnykh ekosistem v regulyatsii klimata i mesto Rossii v postkiotskom protsesse (The Role of Terrestrial Ecosystems in Regulating Climate and the Place of Russia in the Post-Kyoto Process), Moscow: KMK, 2010.

  6. Bulygina, O.N., Veselov, V.M., Razuvaev, V.N., and Aleksandrova, T.M., Description of the array of observation data on the main meteorological parameters at the stations of Russia, Certificate of state database registration No. 2014620549. http://meteo.ru/data/163-basic-parameters. Cited December 12, 2020.

  7. Carbon Cycling in Northern Peatlands: Geophysical Monograph Series, Baird, A., Belyea, L., Comas, X., Reeve, A., and Slater, L., Eds., Washington D.C.: American Geophysical Union, 2013.

    Google Scholar 

  8. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., and Thornton, P., Carbon and Other Biogeochemical Cycles, in Climate Change 2013: The Physical Science Basis, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds., Cambridge: Cambridge University Press, 2013.

    Google Scholar 

  9. Conrad, R., Microbial ecology of methanogens and methanotrophs, Adv. Agron., 2007, vol. 96, pp. 1–63.

    Article  CAS  Google Scholar 

  10. Dokturovsky, V.S., Torfyanye bolota. Kurs lektsii po bolotovedeniyu (Peat Bogs. A Course of Lectures on Mire Science), Moscow: Gos. Nauchno-Tekh. Gorn. Izd., 1932.

  11. Dyukarev, E.A., Partitioning of net ecosystem exchange using chamber measurements data from bare soil and vegetated sites, Agric. For. Meteorol., 2017, vol. 239, pp. 236–248. https://doi.org/10.1016/j.agrformet.2017.03.011

    Article  Google Scholar 

  12. Dyukarev, E., Godovnikov, E., Karpov, D., Kurakov, S., Lapshina, E., Filippov, I., Filippova, N., and Zarov, E., Net ecosystem exchange, gross primary production and ecosystem respiration in ridge-hollow complex at Mukhrino bog, Geogr., Environ., Sustainability, 2019, vol. 2, no. 2, pp. 227–244. https://doi.org/10.24057/2071-9388-2018-77

    Article  Google Scholar 

  13. Efremov, S.P., Efremova, T.T., and Melentyeva, N.V., Stocks of carbon in mire ecosystems, Uglerod v ekosistemakh lesov i bolot Rossii (Carbon in Ecosystems of Forests and Mires of Russia), Krasnoyarsk: Vychislit. Tsentr Sib. Otd. Ross. Akad. Nauk, 1994, pp. 128–139.

    Google Scholar 

  14. Elina, G.A., Dynamics of mire formation in the north-west of Russia in the Holocene, XI Chteniya pamyati akad. V.N. Sukacheva “Biogeotsenoticheskie osobennosti bolot i ikh ispol’zovanie” (The XI Readings to the Memory of a Member of the Academy of Sciences V.N. Sukachev “Biogeocenotic Features of Wetlands and their Use”), Moscow: Ross. Akad. Nauk, 1994, pp. 61–84.

    Google Scholar 

  15. Gauci, V., Fowler, D., Chapman, S.J., and Dise, N.B., Sulfate deposition and temperature controls on methane emission and sulfur forms in peat, Biogeochemistry, 2004, vol. 71, pp. 141–162.

    Article  CAS  Google Scholar 

  16. Golovatskaya, E.A. and Dyukarev, E.A., Seasonal and diurnal dynamics of CO2 emission from the surface of oligotrophic peat soil, Russ. Meteorol. Hydrol., 2011, vol. 36, pp. 413–419.

    Article  Google Scholar 

  17. Inventarizatsiya bioraznoobraziya i sozdanie prirodookhrannoi karty na territoriyu Salymskoi gruppy mestorozhdenii. Otchet o nauchno-issledovatelskoi rabote v ramkakh dogovora № MOS/13/0035 (Biodiversity Inventory and Creation of an Environmental Map for the Territory of the Salym Oilfild. Report on Research Work under Contract No. MOS/13/0035), Khanty-Mansiysk: Yugorsk. Gos. Univ., 2015.

  18. IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds., Cambridge: Cambridge Univ., 2013.

    Google Scholar 

  19. Ivanov, K.E. and Novikov, S.M., Bolota Zapadnoy Sibiri, ikh stroyenie i gidrologicheskii rezhim (Mires of Western Siberia, their Structure and Hydrological Regime), Leningrad: Gidrometeoizdat, 1976.

  20. Karelin, D.V. and Zamolodchikov, D.G., Uglerodnyi obmen v kriogennykh ekosistemakh (Carbon Exchange in Cryogenic Ecosystems), Moscow: Nauka, 2008.

  21. Kettunen, A., Kaitala, V., Lehtinen, A., Lohila, A., Alm, J., Silvola, J., and Martikainen, P.J., Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires, Soil Biol. Biochem., 1999, vol. 31, pp. 1741−1749.

    Article  CAS  Google Scholar 

  22. Kiselev, M.V., Dyukarev, E.A., and Voropay, N.N., Seasonally frozen layer of peatlands in the Southern Taiga zone of Western Siberia, Kriosfera Zemli, 2019, vol. 23, no. 4, pp. 3–15.

    Google Scholar 

  23. Lai, D., Methane dynamics in northern peatlands: a review, Pedosphere, 2009, vol. 19, pp. 409–421.

    Article  CAS  Google Scholar 

  24. Liss, O.L. and Berezina, N.A., Bolota Zapadno-Sibirskoi ravniny (Mires of the West Siberian Plain), Moscow: Nauka, 1981.

  25. Liss, O.L., Abramova, L.I., Avetov, N.A., et al., Bolotnye sistemy Zapadnoi Sibiri i ikh prirodookhrannoe znachenie (Bog Systems of Western Siberia and their Environmental Significance), Kuvaev, V.B., Ed., Tula: Grif i K°, 2001.

    Google Scholar 

  26. Parazoo, N.C., Koven, C.D., Lawrence, D.M., Romanovsky, V., and Miller, C.E., Detecting the permafrost carbon feedback: Talik formation and increased cold-respiration as precursors to sink-to-source carbon transitions, Cryosphere, 2018, vol. 123, pp. 123–144. https://doi.org/10.5194/tc-12-123-2018

    Article  Google Scholar 

  27. Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii (Pools and Fluxes of Carbon in Terrestrial Ecosystems of Russia), Zavarzin, G.A., Ed., Moscow: Nauka, 2007.

    Google Scholar 

  28. Rydin, H. and Jeglum, J., The Biology of Peatlands, Oxford. Univ., 2015.

    Google Scholar 

  29. Sabrekov, A.F., Glagolev, M.V., Alekseychik, P.K., Smolentsev, B.A., Terentieva, I.E., Krivenok, L.A., and Maksyutov, S.S., A process-based model of methane consumption by upland soils, Environ. Res. Lett., 2016, vol. 11, no. 7, p. 075001. https://doi.org/10.1088/1748-9326/11/7/075001

    Article  CAS  Google Scholar 

  30. Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., et al., The global methane budget 2000–2012, Earth Syst. Sci. Data, 2016, vol. 8, pp. 697–751. https://doi.org/10.5194/essd-8-697-2016

    Article  Google Scholar 

  31. Seinfeld, J.H. and Pandis, S.N., Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, John Wiley & Sons, 2006.

    Google Scholar 

  32. Sheng, Y., Smith, L.C., MacDonald, G.M., Kremenetski, K.V., Frey, K.E., Velichko, A.A., Lee, M., Beilman, D.W., and Dubinin, P., A high–resolution GIS–based inventory of the west Siberian peat carbon pool, Global Biogeochem. Cycles, 2004, vol. 18, p. GB3004. https://doi.org/10.1029/2003GB002190

    Article  CAS  Google Scholar 

  33. Shepeleva, L.F., Obukhova, Yu.N., Samoilenko, Z.A., and Volegova, E.A., Mire vegetation of the Bolshoi Salym river basin, Sbornik nauchnykh trudov biologicheskogo fakulteta. Vyp. 4 (Collect. Sci. Papers of the Faculty of Biology. Vol. 4), Surgut: Surgut. Gos. Univ., 2008, pp. 45–58.

  34. Turetsky, M.R., Kotowska, A., Bubier, J., et al., A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands, Global Change Biol., 2014, vol. 20, no. 7, pp. 2183–2197.

    Article  Google Scholar 

  35. Vompersky, S.E., Sirin, A.A., Tsyganova, O.P., Valyaeva, N.A., and Maikov, D.A., Mires and wetlands of Russia: an attempt to analyze the spatial distribution and diversity, Izv. Ross. Akad. Nauk, Ser. Geogr., 2005, no. 5, pp. 21–33.

  36. Vtoroy otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiyskoi federatsii (The Second Assessment Report of Roshydromet on Climate Change and its Consequences on the Territory of the Russian Federation), Moscow: Fed. Sluzhba Gidrometeorol. Monit. Okruzh. Sredy, 2014.

  37. Yu, Z., Holocene carbon flux histories of the world’s peatlands: Global carbon-cycle implications, Holocene, 2011, vol. 21, no. 5, pp. 761– 774. doi 83610 386982https://doi.org/10.1177/09596

  38. Yvon-Durocher, G., Allen, A.P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., and del Giorgio, P.A., Methane fluxes show consistent temperature dependence across microbial to ecosystem scales, Nature, 2014, vol. 507, pp. 488–491. https://doi.org/10.1038/nature13164

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Salym Petroleum Development N. V. as part of the Evaluation of Emission and Absorption of Greenhouse Gases by the Peatland and Forest Ecosystems in the Territory of Licensed Areas of Salym Group of Oilfields R&D project under an agreement concluded between Salym Petroleum Development N. V. and Yugra State University and by the Government of the Tyumen region within the framework of the Program of the World-Class West Siberian Interregional Scientific and Educational Center (national project “Nauka”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Dyukarev.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyukarev, E.A., Sabrekov, A.F., Glagolev, M.V. et al. Emission and Uptake of Greenhouse Gases by Peatland Ecosystems of the Licensed Areas of Salym Oilfield in the Nefteyugansk District of the Khanty-Mansi Autonomous Okrug. Contemp. Probl. Ecol. 15, 671–682 (2022). https://doi.org/10.1134/S1995425522060075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425522060075

Keywords:

Navigation