Skip to main content
Log in

Assessment of ecological risk in change of content of essential poluyunsaturated fatty acids in plankton of lakes during global warming

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The ecological risk of changes in the content of essential polyunsaturated fatty acids (PUFAs) in plankton of lakes due to global warming is assessed. The analyzed hazards are temperature, dissolved phosphorus and nitrogen, and the phyto- and zooplankton structure. The main risks are related not only to the temperature increase, but indirect effects of warming. The critical link in PUFA risk assessment is the phytoplankton structure due to the particularly favorable growth conditions for cyanobacteria in nutrient rich waters in shallow lakes and reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schneider, P. and Hook, S.J., Space Observations of Inland Water Bodies Show Rapid Surface Warming Since 1985, Geophys. Res. Lett., 2010, vol. 37, no. 24, p. L22405.

    Article  Google Scholar 

  2. McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., and White, K.S., Climate Change, Cambridge University Press, 2001.

  3. Moore, M.V., Hampton, S.E., Izmest’Eva L.R., Silow E.A., Peshkova E.V., and Pavlov B.K. Climate Change and the World’s Sacred Sea — Lake Baikal, Siberia, BioScience, 2009, vol. 59, pp. 405–417.

    Article  Google Scholar 

  4. Maazouzi, C., Masson, G., Izquierdo, M.S., and Pihan, G.C., Midsummer Heat Wave Effects on Lacustrine Plankton: Variation of Assemblage Structure and Fatty Acid Composition, J. Thermal Biology, 2008, vol. 33, no. 5, pp. 287–296.

    Article  CAS  Google Scholar 

  5. Gladyshev, M.I., Arts, M.T., and Sushchik, N.N., Preliminary Estimates of the Export of Omega-3 Highly Unsaturated Fatty Acids (EPA + DHA) from Aquatic To Terrestrial Ecosystems, Lipids in aquatic ecosystems. New York: Springer, 2009, pp. 179–209.

  6. Gladyshev, M.I., Semenchenko, V.P., Dubovskaya, O.P., Fefilova, E.B., Makhutova, O.N., Buseva, Zh.F., Sushchik, N.N., Baturina, M.A., Razlutskij, V.I., Lepskaya, E.V., and Kalacheva, G.S., Effect of Water Temperature on the Content of Essential Polyunsaturated Fatty Acids in Freshwater Zooplankton, Doklady Biochemistry and Biophysics, 2011, vol. 437, pp. 57–59.

    Article  PubMed  CAS  Google Scholar 

  7. Arts M., Ackman R.G., and Holub B.J. Essential fatty acids in aquatic ecosystems: a crucial link between diet and human health and evolution Can. J. Fish. Aqu. 2001. vol. 58. pp. 122–137.

    Article  CAS  Google Scholar 

  8. Anonymous. Guidelines for Ecological Risk Assessment, Washington, DC. 1998.

  9. Shlyakhter, A., Valverde, L.G., and Wilson, A.Jr.R., Integrated Risk Analysis of Global Climate Change, Chemosphere, 1995, vol. 30, no. 8, pp. 1585–1618.

    Article  CAS  Google Scholar 

  10. Jeppesen, E., Eutrophication and Global Warming — the Key Environmental Issues for Small Lakes and Ponds in the Next 25 Years, Environmental Future of Aquatic Ecosystems. Switzerland: ETH Zurich, 2003.

  11. Feuchtmayr, H., Moran, R., Hatton, K., Connor, L., Heyes, T., Moss, B., Harvey, I., and Atkinson, D., Global Warming and Eutrophication: Effects on Water Chemistry and Autotrophic Communities in Experimental Hypertrophic Shallow Lake Mesocosms, J. Applied Ecology, 2009, vol. 46, pp. 713–723.

    Article  Google Scholar 

  12. Matzinger, A., Schmid, M., Veljanoska-Sarafiloska, E., Patceva, S., Guseska, D., Wagner, B., Mller, B., Sturm, M., and Wuest, A., Eutrophication of Ancient Lake Ohrid: Global Warming Amplifies Detrimental Effects of Increased Nutrient Inputs, Limnol. Oceanogr., 2007, vol. 52, no. 1, pp. 338–353.

    Article  CAS  Google Scholar 

  13. Muller-Navarra, D.C., Brett, M.T., Park, S., Chandra, S., Ballantyne A.P., Zorita E., and Goldman C.R. Unsaturated fatty acid content in seston and trophodynamic coupling in lakes, Nature, 2004, vol. 427, pp. 69–72.

    Article  PubMed  Google Scholar 

  14. Ecker, M.D. and Janssen, A., Statistical Analysis of Water Quality Data from Lake Casey and Silver Lake / UNI Summer Lakes Study Report, 2000, pp. 1–6.

  15. Konopka, A. and Brock, T.D., Effect of Temperature on Blue-Green Algae (Cyanobacteria) in Lake Mendota, Applied and Environmental Microbiology, 1978, vol. 36, no. 4, pp. 572–576.

    PubMed  CAS  Google Scholar 

  16. Hiroyuki, I., Kwang-Hyeon, C., Maiko, K., and Shin-Ichi, N., Temperature-Dependent Dominance of Microcystis (Cyanophyceae) Species: M. Aeruginosa and M. Wesenbergii, J. Plank. Res, 2009, vol. 31, no. 2, pp. 171–178.

    Google Scholar 

  17. Mitrakhovich, P.A., Samoilenko, V.M., Karatashevich, Z.K., Svirid, A.A., Kozlov, E.A., Korolev, G.N., and Papko, N.A., Ekosistema vodoema-okhladitelya Lukoml’skoi GRES, in Pravo i ekonomika (TRANSLATION), Minsk, 2008.

  18. Xie, L.Q., Xie, P., and Tang, H.J., Enhancement of Dissolved Phosphorus Release from Sediment To Lake Water by Microcystis Blooms — An Enclosure Experiment in a Hyper-Eutrophic, Subtropical Chinese Lake, Environ. Pollut., 2003, vol. 122, no. 3, pp. 391–399.

    Article  PubMed  CAS  Google Scholar 

  19. Sushchik, N.N., Rol’ nezamenimykh zhirnykh kislot v trofometabolicheskikh vzaimodeistviyakh presnovodnykh ekosistem, Zh. Obshch. Biol., 2008, vol. 69, no. 4, pp. 299–316.

    PubMed  CAS  Google Scholar 

  20. Burns, C.W., Brett, M.T., and Schallenberg, M.A., A Comparison of the Trophic Transfer of Fatty Acids in Freshwater Plankton by Cladocerans and Calanoid Copepods, Freshwater Biology, 2011, vol. 56, no. 5, pp. 889–903.

    Article  Google Scholar 

  21. Schindler, D.E., Rogers, D.E., Scheuerell, M.D., and Abrey, C.A., Effects of Changing Climate on Zooplankton and Juvenile Sockeye Salmon Growth in Southwestern Alaska, Ecology, 2005, vol. 86, pp. 198–209.

    Article  Google Scholar 

  22. Visconti, A., Manca, M., and De Bernardi, R., Eutrophication-Like Response To Climate Warming: An Analysis of Lago Maggiore (N. Italy) Zooplankton in Contrasting Years, J. Limnol, 2008, vol. 67, no. 2, pp. 87–92.

    Article  Google Scholar 

  23. Sushchenya, L.M., Semenchenko, V.P., and Galkovskaya, G.A., Vidovoe raznoobrazie pelagicheskogo zooplanktona ozer raznogo tipa, Dokl. Akad. Nauk Belarusi, 2001, vol. 46, no. 6, pp. 83–85.

    Google Scholar 

  24. Brucet, S., Dani, B., Quintana, X.D., Jensen, E., Nathansen, L.W., Trochine, C., Meerhoff, M., Gascn, S., and Jeppesen, E., Factors Influencing Zooplankton Size Structure at Contrasting Temperatures in Coastal Shallow Lakes: Implications for Effects of Climate Change, Limnol. Oceanogr., 2010, vol. 55, no. 4, pp. 1697–1711.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Semenchenko.

Additional information

Original Russian Text © V.P. Semenchenko, 2012, published in Sibirskii Ekologicheskii Zhurnal, 2012, No. 4, pp. 523–528.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenchenko, V.P. Assessment of ecological risk in change of content of essential poluyunsaturated fatty acids in plankton of lakes during global warming. Contemp. Probl. Ecol. 5, 386–390 (2012). https://doi.org/10.1134/S1995425512040129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425512040129

Keywords

Navigation