Skip to main content
Log in

Short-term thermal compensatory-adaptive reaction mechanisms of the liver in Carassius auratus gibelio

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

An hour after hyperthermia has been induced in an individual of the species Carassius auratus gibelio Bloch, a number of metabolic reactions in the liver are blocked and simultaneously responses acquired in the course of evolution are triggered. As metabolic depression develops, the activity of the Krebs cycle mitochondrial enzymes increases by 20.4% for NADIDH and decreases by 10.2% for NADMDH; glycolysis enhances by 50.2%; caspase-3 and acid phosphatase become more active, which reflects the course of programmed ways of hepatocyte destruction along the lines of apoptosis, autophagy, and necrosis. Early regeneration processes are initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. O. Pörtner, A. F. Bennett, F. Bozinovic, and A. Clarke, “Trade-Offs in Thermal Adaptation: The Need for a Mo lecular to Ecological Integration,” Physiol. Biochem. Zool. 79(2), 295 (2006).

    Article  PubMed  Google Scholar 

  2. K. M. Hare, S. Pledger, M. B. Thompson, et al., “Patterns of Metabolic Rate among New Zealand Lizards (Reptilia: Lacertilia: Diplodactylidae and Scincidae,” Physiol. Biochem. Zool. 79(4), 745 (2006).

    Article  PubMed  Google Scholar 

  3. M. L. Foltz, B. I. Dalal, L. D. Wadsworth, et al., “Recognition and Management of Methemoglobinemia and Hemolysis In a G6PD-Deficient Patient on Experimental Anticancer Drug Triapine,” Hematology 81(3), 210 (2006).

    Article  Google Scholar 

  4. A. S. Konstantinov et al., “Influence of Fluctuations of Abiotic Factors on the Metabolism of Some Hydrobionts,” Izv. RAN, Ser. Biol., No. 6, 728 (2003).

    Google Scholar 

  5. A. S. Konstantinov et al., “Energy budget of young sturgeon in constant, variable thermoregimens and in free swimming in thermogradient space,” Vestnik Mosk. Univ., Ser. 16, Biol., No. 1, 38 (2004).

    Google Scholar 

  6. W. G. Willmore and K. B. Storey, “Glutathione Systems and anoxia tolerance in Turtles,” Am. J. Physiological. 273, 219 (1997).

    Google Scholar 

  7. A. Y. Gracey et al., “Hypoxia-Induced Gene Expression Profiling in the Euryoxic Fish Gillichthys mirabilis,” Proc. Natl. Acad. Sci. USA 98, 1993 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. M. J. Angilletta et al., “The Evolution of Thermal Physiology in Ectotherms,” Therm. Biol. 27, 249 (2002).

    Article  Google Scholar 

  9. D. S. Sarkisov, Structural Fundamentals of Adaptation and Compensation of Disturbed Functions (Moscow, 1987) [in Russian].

  10. B. Winchester, “Lysosomal Metabolism of Glycoproteins,” Glycobiology 15(6), 1 (2005).

    Article  Google Scholar 

  11. C. Michiels, “Physiological and Pathological Responses to Hypoxia,” Am. J. Pathology 164, 1875 (2004).

    CAS  Google Scholar 

  12. Y.-M. Chang and P.-C. L. Hou, “Thermal Acclimation of Metabolic Rate May be Seasonally Dependent in the Subtropical Anuran Latouche’s Frog (Rana latouchii, Boulenger),” Physiol. Biochem. Zool. 78(6), 947 (2005).

    Article  PubMed  Google Scholar 

  13. M. A. Valovaya and D. N. Kavtaradze, Microtechnics of the Rule of Reception, the Art of Experiment (Moscow, 1993) [in Russian].

  14. G. G. Avtandilov, Fundamentals of Quantitative Pathological Anatomy (Moscow, 2002) [in Russian].

  15. A. E. Medvedev, “Investigation of Regulation and catalytic Properties of Mitochondrial Monoamine Oxidases and the Structures of Their Endogenous Inhibition with Trabulin,” Doctoral Dissertation in Medicine (Moscow, 1994) [in Russian].

  16. M. I. Prokhorova (Ed.), Methods of Biochemical Research (Leningrad, 1982) [in Russian].

  17. S. N. Lyzlova and V. G. Vladimirov, Enzymes and Nucleic Acids (St. Petersburg, 1997) [in Russian].

  18. O. Yu. Rebrova, Statistical Analysis of Medical Data. Application of the Kit of Applied Programs STATISTICA (Ìoscow, 2002) [in Russian].

  19. M. M. Kalashnikova, Ultrastructural Aspects of Adaptive Peculiarities of the Liver Cells of the Vertebrate (Ìoscow, 2003) [in Russian].

  20. P. Codogno and A.J. Meijer, “Autophagy and Signaling: Their Role in a Surviving of an Alveole and Mors of an Alveole Mors of the Alveole Differs,” Cell Death Differ. 12(2), 1509 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. A. A. Filchenkov, “Caspases: Regulators of Apoptosis and Other Cellular Functions,” Biokhimiya 68(4), 453 (2003).

    Google Scholar 

  22. D. A. Petrov, “Mutational Equilibrium Model of Genome Size Evolution,” Theor. Popul. Biol. 61, 531 (2002).

    Article  PubMed  Google Scholar 

  23. N. D. Ozernyuk, Ontogenesis Bioenergetics (Moscow, 2000) [in Russian].

  24. T. I. Rakhmanova et al., “Some Features of NADP-Iso-Citratedehydrogenase Functioning in Hepatocyte Mitochondria of Rats,” Vestn. VSU, Ser. Khim. Biol., No. 2, 142 (2001).

    Google Scholar 

  25. M. V. Levenkova et al., “Some Regulation Properties of Glucose-6-Phosphatedehydrogenase from the Liver of Rats in Norm and Experimental Toxic Hepatitis,” Vestn. VSU. Ser. Khim. Biol., No. 1, 134 (2004).

    Google Scholar 

  26. S. Filosa, et al., “Failure to Increase Glucose Consumption through the Pentose-Phosphate Pathway Results in the Death of Glucose-6-Phosphate Dehydrogenase Gene-Deleted Mouse Embryonic Stem Cells Subjected to Oxidative Stress,” Biochem. 15, 935 (2003).

    Article  Google Scholar 

  27. L. Gao et al., “Induction of the Glucose-6-Phosphate Dehydrogenase Gene Expression by Chronic Hypoxia in PC12 cells,” FEBS 569(1–3), 256 (2004).

    Article  CAS  Google Scholar 

  28. G. F. Gaetani, et al., “ANovel NADPH:(bound) NADP+ Reductase and NADH:(bound) NADP+ Transhydrogenase Function in Bovine Liver Catalase,” Biochem. 385, 763 (2005).

    Article  CAS  Google Scholar 

  29. L. Tomanek and G. N. Somero, “Evolutiomry and Acclimation-Induced Variation in the Heat-Shock Responses of Congeneric Marine Snails (Genus Tegula) from Different Thermal Habitats: Implications for Limits of Thermotolerance and Biogeography,” J. Exp. Biol. 202, 2925 (1999).

    PubMed  Google Scholar 

  30. G. V Ganusova, “The Influence of CoCl2 on the Activity of NADP-Dependent Dehydrogenases and P-450 and b5 Microsomal Cytochrome Content in the Liver of Rats of Different Ages Has Been Studied,” Vestn. Khark. Natl. Univ. Ser. Biol. 709, 1 (2005).

    Google Scholar 

  31. A. E. McKechnie and B. O. Wolf, “Partitioning of Evaporative Water Loss in White-Winged Doves: Plasticity in Response to Short-Term Thermal Acclimation,” J. Exp. Biol. 207, 203 (2004).

    Article  PubMed  Google Scholar 

  32. S. M. Lee et al., “Cytosolic NADP(+)-Dependent Isocitrate Dehydrohenase Status Modulates Oxidative Damage to Cells,” Free Radic. Med. 32(11), 1185 (2002).

    Article  CAS  Google Scholar 

  33. R. Upadhyay, S. Gupta, and M. S. Kanungo, “Trans-Acting Factors that Interact with the Proximal Promoter Sequences of Ovalbumin Gene are Tissue-Specific and Age-Related,” J. Mol. Cell. Biochem. 201(1–2), 65 (1999).

    Article  CAS  Google Scholar 

  34. M. E. Baker, “Xenobiotics and the Evolution of Multicellular Animals: Emergence and Diversification of Ligand-Activated Transcription Factors,” J. Integr. Compar. Biol. 45(1), 172 (2005).

    Article  CAS  Google Scholar 

  35. P. T. Schumacker, N. Chandel, and A. G. Agusti, “Oxygen Conformance of Cellular Respiration in Hepatocytes,” Am. J. Physiol. 265, 395 (1993).

    Google Scholar 

  36. K. Beitner-Johnson, R. T. Rust, and T. C. Hsieh, “Hypoxia Activates Akt and Induces Phosphorylation of GSK-3 in PC 12 Cells,” J. Cell. Sigml., No. 13, 23 (2001).

    Article  CAS  Google Scholar 

  37. H. O. Pör tner, “Physiological Basis of Temperature-Dependent Biogeography: Trade-Offs in Muscle Design and Performance in Polar Ectotherms,” J. Exp. Biol. 205(15), 2217 (2002).

    Google Scholar 

  38. R. G. Boutilier, “Surviving Hypoxia without Really Dying,” Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 126(4), 481 (2000).

    Article  CAS  Google Scholar 

  39. R. Woodyer et al., “Mechanistic investigation of a Highly Active Phosphite Dehydrogenase Mutant and its application for NADPH Regeneration,” FEBS 272, 3816 (2005).

    Article  CAS  Google Scholar 

  40. T. R. Gregory, “Nucleotypic Effects without Nuclei: Genome Size and Erythrocyte Size in Mammals,” Genome 43(5), 895 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. B. R. Poulsen et al., “Increased NADPH Concentration Obtained by Metabolic Engineering of the Pentose Phosphate Pathway in Aspergillus niger,” FEBS 272, 1313 (2005).

    Article  CAS  Google Scholar 

  42. M. Busk and R. G. Boutilier, “Metabolic Arrest and Its Regulation in Anoxic Eel Hepatocytes,” Physiol. Biochem. Zool. 78(6), 926 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. K. Kivinen et al., “Caspase-3 is Required in the Apoptotic Disintegration of the Nuclear Matrix,” Exp. Cell Res. 311(1), 62 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. B. McLaughlin, “Caspase 3 activation is Essential for Neuroprotection in Preconditioning,” Proc. Natl. Acad. Sci. 100, 715 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. S. Ya. Proskuryakov, “Necrosis—an Active Form of Programmed Cell Destruction,” Biokhimiya 67(4), 468 (2002).

    Google Scholar 

  46. A. E. Vinogradov, “A Spiral of DNA: Importance of to be the Rich Collector of Dust,” Nucleic Acids Res. 31, 1838 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. T. Bishop, J. St-Pierre, and M. D. Brand, “Primary Causes of Decreased Mitochondrial Oxygen Consumption during Metabolic Depression in Snails,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, 372 (2002).

    Google Scholar 

  48. K. Heerlein, et al., “Hypoxia Decreases Cellular ATP Demand and Inhibits Mitochondrial Respiration of A549,” Cells Am. J. of Respiratory Cell and Molecular Biology 32, 44 (2005).

    Article  CAS  Google Scholar 

  49. P. W. Hochachka and P. L. Lutz, “Mechanism, Origin, and Evolution of Anoxia Tolerance in Animals,” Comp. Biochem. Physiol. 130(4), 435 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Antonova.

Additional information

Original Russian Text © E.I. Antonova, 2010, published in Sibirskii Ekologicheskii Zhurnal, 2010, Vol. 17, No. 1, pp. 79–85

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonova, E.I. Short-term thermal compensatory-adaptive reaction mechanisms of the liver in Carassius auratus gibelio . Contemp. Probl. Ecol. 3, 57–62 (2010). https://doi.org/10.1134/S1995425510010108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425510010108

Key words

Navigation