Skip to main content
Log in

Solving approximately a prediction problem for stochastic jump-diffusion systems

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new approach to solving a prediction problem for nonlinear stochastic differential systems with a Poisson component is discussed. In this approach, the prediction problem is reduced to an analysis of stochastic jump-diffusion systems with terminating and branching paths. The prediction problem can be approximately solved by using numerical methods for stochastic differential equations and methods for modeling inhomogeneous Poisson flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paraev, Yu.I., Vvedenie v statisticheskuyu dinamiku protsessov upravleniya i filtratsii (Introduction to Statistical Dynamics of Control and Filtering Processes), Moscow: Sovetskoe Radio, 1976.

    Google Scholar 

  2. Pugachev, V.S. and Sinitsyn, I.N., Teoriya stokhasticheskikh sistem (Stochastic Systems: Theory and Applications), Moscow: Logos, 2004.

    Google Scholar 

  3. Sinitsyn, I.N., Filtry Kalmana i Pugacheva (Kalman and Pugachev Filters), Moscow: Logos, 2007.

    Google Scholar 

  4. Rybakov, K.A., Extrapolation Algorithms for Stochastic Differential Systems Based on Modeling Special Branching Process, Diff. Ur. Prots. Upr., 2015, no. 1, pp. 25–38.

    MathSciNet  Google Scholar 

  5. Rybakov, K.A., Reducing the Nonlinear Filtering Problem to the Analysis of Stochastic Systems with Terminating and Branching Paths, Diff. Ur. Prots. Upr., 2012, no. 3, pp. 91–110.

    Google Scholar 

  6. Rybakov, K.A., Modified Algorithm for Optimal Signal Filtering Based on Modeling Special Branching Process, Aviakosm. Priborost., 2013, no. 3, pp. 15–20.

    Google Scholar 

  7. Rybakov, K.A., Solving Approximately an Optimal Nonlinear Filtering Problem for Stochastic Differential Systems by Statistical Modeling, Sib. Zh. Vych. Mat., 2013, vol. 16, no. 4, pp. 377–391.

    MATH  Google Scholar 

  8. Panteleyev, A.V., Rudenko, E.A., and Bortakovskii, A.S., Nelineinye sistemy upravleniya: opisanie, analiz i sintez (Nonlinear Control Systems: Description, Analysis, and Synthesis), Moscow: Vuzovskaya Kniga, 2008.

    Google Scholar 

  9. Rybakov, K.A., Approximate Filter for Jump-Diffusion Models, Nauch. Vest. MGTU GA, 2014, no. 207, pp. 54–60.

    Google Scholar 

  10. Averina, T.A. and Rybakov, K.A., TwoMethods for Analysis of Stochastic Systems with PoissonComponent, Diff. Ur. Prots. Upr., 2013, no. 3, pp. 85–116.

    Google Scholar 

  11. Korolyuk, V.S., Portenko, N.I., Skorokhod, A.V., and Turbin, A.F., Spravochnik po teorii veroyatnostei i matematicheskoi statistike (Handbook for Probability Theory and Mathematical Statistics), Moscow: Nauka, 1985.

    MATH  Google Scholar 

  12. Situ, R., Theory of Stochastic Differential Equations with Jumps and Applications, Springer, 2005.

    MATH  Google Scholar 

  13. Kazakov, I.E., Artemiev, V.M., and Bukhalev, V.A., Analiz sistem sluchaynoi struktury (Analysis of Systems with Random Structure), Moscow: Fizmatlit, 1993.

    Google Scholar 

  14. Averina, T.A., Stable Numerical Methods for Solving Stochastic Differential Equations in the Sense of Stratonovich, Vest. Buryat. Gos. Univ., 2012, no. 9, pp. 91–94.

    Google Scholar 

  15. Artemiev, S.S. and Averina, T.A., Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations, Utrecht: VSP, 1997.

    Book  MATH  Google Scholar 

  16. Kuznetsov, D.F., Stohasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya (Stochastic Differential Equations: Theory and Practice of Numerical Solution), St. Petersburg: Polytechn. Univ., 2010.

    Google Scholar 

  17. Kloeden, P.E. and Platen, E., Numerical Solution of Stochastic Differential Equations, Berlin: Springer, 1995.

    MATH  Google Scholar 

  18. Averina, T.A., New Algorithms for Statistical Modeling of Inhomogeneous Poisson Ensembles, Zh. Vych. Mat. Mat. Fiz., 2010, vol. 50, no. 1, pp. 16–23.

    MathSciNet  MATH  Google Scholar 

  19. Averina, T.A. and Mikhailov, G.A., Algorithms for Exact and Approximate Statistical Simulation of Poisson Ensembles, Zh. Vych. Mat. Mat. Fiz., 2010, vol. 50, no. 6, pp. 1005–1016.

    MATH  Google Scholar 

  20. Mikhailov, G.A. and Averina, T.A., TheMaximal SectionAlgorithmin theMonte CarloMethod, Dokl. Akad. Nauk, 2009, vol. 428, no. 2, pp. 163–165.

    Google Scholar 

  21. Mikhailov, G.A. and Rogazinskii, S.V., The Modified Majorant FrequencyMethod for Numerical Simulation of the Generalized Exponential Distribution, Dokl. Akad. Nauk, 2012, vol. 444, no. 1, pp. 28–30.

    MATH  Google Scholar 

  22. Averina, T.A. and Rybakov, K.A., Two Methods for Analysis of Stochastic Multistructural Systems with Distributed Change of Structure, Sib. Zh. Vych. Mat., 2008, vol. 11, no. 1, pp. 1–18.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Averina.

Additional information

Original Russian Text © T.A. Averina, K.A. Rybakov, 2017, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2017, Vol. 20, No. 1, pp. 1–13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averina, T.A., Rybakov, K.A. Solving approximately a prediction problem for stochastic jump-diffusion systems. Numer. Analys. Appl. 10, 1–10 (2017). https://doi.org/10.1134/S1995423917010013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423917010013

Keywords

Navigation