Skip to main content
Log in

Hydrolytic Degradation of Polylactide in Distilled Water and Seawater

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

In the work, the effect of 120-day exposure to distilled water and seawater at 23°C on the structure and properties of polylactide was studied. It was found that the melting and glass transition temperature of polylactide decreased by 2°C in distilled water, while the crystallinity degree increased by 9 and 5% in distilled water and in seawater, respectively. Atomic force microscopy revealed pores defects with a diameter of 150–200 and 170–230 μm after exposure to seawater and distilled water, respectively. Elongation and tensile strength at break were significantly reduced during the hydrolytic degradation of polylactide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. K. A. Barnes, A. Walters, and L. Goncalves, “Macroplastics at sea around Antarctica,” Mar. Environ. Res. 70, 250–252 (2010).

    Article  CAS  Google Scholar 

  2. Yu. V. Tertyshnaya and L. S. Shibryaeva, “Degradation of poly(3-hydroxybutyrate) and its blends during treatment with UV light and water,” Polym. Sci., Ser. B 55, 164–168 (2013).

    Article  CAS  Google Scholar 

  3. M. V. Podzorova, Yu. V. Tertyshnaya, and A. A. Popov, “The effect of environmental factors on biodegradable polylactide-based materials,” Polym. Sci., Ser. D 10, 289–292 (2017).

    CAS  Google Scholar 

  4. L.-T. Lim, R. Auras, and M. Rubino, “Processing technologies for poly(lactic acid),” Prog. Polym. Sci. 33, 820 (2008).

    Article  CAS  Google Scholar 

  5. D. Garlotta, “A literature review of polylactid acid,” J. Polym. Environ. 9, 63–84 (2001).

    Article  CAS  Google Scholar 

  6. Y. Young, S. W. Lee, S. J. Lee, and W. H. Park, “Thermal interfiber bonding of electrospun poly(L-lactid acid) nanofiber,” Mater. Lett. 60, 1331–1333 (2006).

    Article  Google Scholar 

  7. M. Obarzanek-Fojt, Yv. Elbs-Glatz, E. Lizundia, L. Diener, S.-R. Sarasua, and A. Bruinink, “From implantation to degradation—are poly (L-lactide)/multiwall carbon nanotube composite materials really cytocompatible?,” Nanomed.: Nanotechnol. Biol. Med. 10 (5), 1041 (2014).

    Article  CAS  Google Scholar 

  8. R. Ortiz, S. Moreno-Flores, I. Quintana, Md. M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater. Sci. Eng: C 37, 241 (2014).

    Article  CAS  Google Scholar 

  9. Yu. V. Tertyshnaya, S. G. Karpova, and A. A. Popov, “Effect of aqueous medium on the molecular mobility of polylactide,” Russ. J. Phys. Chem. B 36 (6), 84–91 (2017).

    Google Scholar 

  10. V. K. Holm, S. Ndoni, and J. Risbo, “The stability of poly(lactic acid) packaging films as influenced by humidity and temperature,” J. Food Sci. 71, 40–44 (2006).

    Article  Google Scholar 

  11. V. Piemonte and F. Gironi, “Kinetics of hydrolytic degradation of PLA,” J. Polym. Environ. 21, 313–318 (2013).

    Article  CAS  Google Scholar 

  12. C. Stathokostopoulou and P. A. Tarantili, “Preparation, characterization and drug release studies from poly(D,L-lactic acid)/organoclay nanocomposites films,” J. Macromol. Sci. Pure Appl. Chem. 51, 117–124 (2014).

    Article  CAS  Google Scholar 

  13. Q. Zhou and M. Xanthos, “Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides,” Polym. Degrad. Stab. 93, 1450–1459 (2008).

    Article  CAS  Google Scholar 

  14. E. Olewnik-Kruszkowska, “Influence of the type of buffer solution on thermal and structural properties of polylactide-based composites,” Polym. Degrad. Stab. 129, 87–95 (2016).

    Article  CAS  Google Scholar 

  15. G. H. Yew, A. M. Mohd Yusof, Z. A. Mohd Ishak, and U. S. Ishiaku, “Water absorption and enzymatic degradation of polylactic acid/rice starch composites,” Polym. Degrad. Stab. 90, 488– 500 (2005).

    Article  CAS  Google Scholar 

  16. G. E. Johnson, in Water in Polymers, Ed. by S. P. Rowland (Am. Chem. Soc., Washington, D.C., 1980), p. 441.

    Google Scholar 

  17. M. O. Gallyamov, Diffusion in Polymers. Visualization of Solutions to Typical Diffusion Problems (Krasand, 2014) [in Russian].

    Google Scholar 

  18. Y. Ohtani, K. Okumura, and A. Kawaguchi, “Crystallization behavior of amorphous poly(L-lactide),” J. Macromol. Sci., Part B: Phys. 42, 875–888 (2003).

    Article  Google Scholar 

  19. Yu. V. Tertyshnaya, S. G. Karpova, O. V. Shatalova, A. V. Krivandin, and L. S. Shibryaeva, “Effect of temperature on the molecular mobility in polylactide,” Polym. Sci., Ser. A 58 (1), 50 (2016).

    Article  CAS  Google Scholar 

  20. M. Deroine, A. Le Duigou, Y.-M. Corre, P.-Y. Le Gac, P. Davies, G. Cesar, and S. Bruzaud, “Accelerated aging of polylactide in aqueous environment: Comparative study between distilled water and seawater,” Polym. Degrad. Stab. 108, 319–329 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to NT-MDT Spectrum Instruments (Moscow) and S.I. Nesterov for their help in performing experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Tertyshnaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tertyshnaya, Y.V., Popov, A.A. Hydrolytic Degradation of Polylactide in Distilled Water and Seawater. Polym. Sci. Ser. D 13, 306–310 (2020). https://doi.org/10.1134/S1995421220030211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421220030211

Keywords:

Navigation