Skip to main content
Log in

Winter Dynamics of the Vertical Distribution of Drifting Invertebrates in a Small Salmon River

  • ZOOPLANKTON, ZOOBENTHOS, ZOOPERIPHYTON
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Mayfly larvae (Ephemeroptera), Diptera larvae, and adult water mites (Hydracarina) dominated in the winter syrton of a small salmon river. No significant linear dependence of the number of drifters entering the nets on the filtered water volume was found; therefore, we used not the syrton density (ind./m3), but the data of the actual catches. The vertical distribution of drifting invertebrates of different taxonomic affiliation had its own characteristics. The drift intensity of invertebrates increased in the daytime under conditions of good illumination of the water column. We assume that this fact is indirectly related to the low water temperature, which limits the swimming ability of drift-feeding fish, which, in turn, become more vulnerable to ichthyophagous endothermic predators. Altogether this preconditions fish’s predominantly sedentary, secretive lifestyle during daylight hours in winter. In December, most daytime drifters migrated close to the water surface and, in January, on the contrary, they kept near the bottom. The latter may be due to the overwhelming effect of lower daytime air temperatures, since the river channel was not completely covered with ice until mid-February. After a heavy February snowfall, the upper water layers of the river flow turned out to be isolated from the effect of air temperature, and the level of illumination of the water column during the daytime hours corresponded to the period of late twilight. As a result, the fish became less accessible to semiaquatic endothermic predators, the intensity of invertebrate drift in the daytime decreased sharply, and the vertical distribution of drifters along the stream became fairly uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aleksandrov, A.A. and Trakhtengerts, M.S., Voda. Plotnost’ pri atmosfernom davlenii i temperaturakh ot 0 do 100°S. Tablitsy standartnykh spravochnykh dannykh GSSSD 2-77 (Water. Density at Atmospheric Pressure and Temperatures from 0 to 100°C. Tables of Standard Reference Data of GSSSD 2-77), Moscow: Izd. Standartov, 1978.

  2. Alekseevskii, N.I., Gidrofizika (Hydrophysics), Moscow: Akademiya, 2006.

    Google Scholar 

  3. Allan, J.D. and Feifarek, B.P., Distances travelled by drifting mayfly nymphs: factors influencing return to the substrate, J. North Am. Benthol. Soc., 1989, vol. 8, no. 4, p. 322. https://doi.org/10.2307/1467495

    Article  Google Scholar 

  4. Astakhov, M.V., Drift of phyto- and zoobenthos in a model salmon-rich Kedrovaya River (Primorsky Krai, Russia), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok, 2009.

  5. Astakhov, M.V., Stratifying drift sampler, Amur. Zool. J., 2012, vol. 4, no. 1, p. 3. https://www.biotaxa.org/azj/issue/view/9865/918

  6. Astakhov, M.V. and Bogatov, V.V., Vertical redistribution of drifting benthic invertebrates in the Kedrovaya River, Primorsky Region of Russia, Open J. Ecol., 2014, vol. 4, no. 2, p. 53. https://doi.org/10.4236/oje.2014.42007

    Article  Google Scholar 

  7. Berner, L.M., Limnology of the Lower Missouri River, Ecology, 1951, vol. 32, no. 1, p. 1. https://doi.org/10.2307/1930968

    Article  Google Scholar 

  8. Bogatov, V.V., Combined conception of the functioning river ecosystems, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 1995, no. 3, p. 51.

  9. Bogatov, V.V. and Astakhov, M.V., Under-ice drift of invertebrates in the piedmont part of Kedrovaya River (Primorskii Krai), Inland Water Biol., 2011, vol. 4, no. 1, p. 56. https://doi.org/10.1134/S1995082911010032

    Article  Google Scholar 

  10. Campbell, R.N.B., Comparison of the drift of live and dead Baëtis nymphs in a weakening water current, Hydrobiologia, 1985, vol. 126, p. 229. https://doi.org/10.1007/BF00007500

    Article  Google Scholar 

  11. Chebanova, V.V., Bentos lososevykh rek Kamchatki (The Benthos of Kamchatka Salmon Rivers), Moscow: Vseross. Nauchno-Issled. Inst. Rybn. Knoz. Okeanogr., 2009.

  12. Clifford, H.F., A years’ study of the drifting organisms in a brown-water stream of Alberta, Canada, Can. J. Zool., 1972, vol. 50, no. 7, p. 975. https://doi.org/10.1139/z72-130

    Article  Google Scholar 

  13. Copp, G.H., Faulkner, H., Doherty, S., et al., Diel drift behaviour of fish eggs and larvae, in particular barbel, Barbus barbus (L.), in an English chalk stream, Fish. Manage. Ecol., 2002, vol. 9, no. 2, p. 95. https://doi.org/10.1046/j.1365-2400.2002.00286.x

    Article  Google Scholar 

  14. Crisp, D.T. and Gledhill, T., A quantitative description of the recovery of the bottom fauna in a muddy reach of a mill stream in southern England after draining and dredging, Arch. Hydrobiol., 1970, vol. 67, no. 4, p. 502.

    Google Scholar 

  15. D’Amours, J., Thibodeau, S., and Fortin, R., Comparison of lake sturgeon (Acipenser fulvescens), Stizostedion spp., Catostomus spp., Moxostoma spp., quillback (Carpiodes cyprinus), and mooneye (Hiodon tergisus) larval drift in Des Prairies River, Quebec, Can. J. Zool., 2001, vol. 79, no. 8, p. 1472. https://doi.org/10.1139/z01-095

    Article  Google Scholar 

  16. Douglas, P.L., Forrester, G.E., and Cooper, S.D., Effects of trout on the diel periodicity of drifting in baetid mayflies, Oecologia, 1994, vol. 98, p. 48. https://doi.org/10.1007/BF00326089

    Article  PubMed  Google Scholar 

  17. Downes, B.J., Back to the future: little-used tools and principles of scientific inference can help disentangle effects of multiple stressors on freshwater ecosystems, Freshwater Biol., 2010, vol. 55, p. 60. https://doi.org/10.1111/j.1365-2427.2009.02377.x

    Article  Google Scholar 

  18. Downes, B.J. and Lancaster, J., Does dispersal control population densities in advection-dominated systems? A fresh look at critical assumptions and a direct test, J. Anim. Ecol., 2010, vol. 79, no. 1, p. 235. https://doi.org/10.1111/j.1365-2656.2009.01620.x

    Article  PubMed  Google Scholar 

  19. Elliott, J.M., The distances travelled by drifting invertebrates in a Lake District stream, Oecologia, 1971, vol. 6, p. 350. https://doi.org/10.1007/BF00389109

    Article  CAS  PubMed  Google Scholar 

  20. Esin, E.V., Chebanova, V.V., and Leman, V.N., Ekosistema maloi lososevoi reki Zapadnoi Kamchatki (sreda obitaniya, donnoe naselenie i ikhtiofauna) (Ecosystem of Small Salmon River of Western Kamchatka (Environment, Bottom Population, and Ichthyofauna)), Moscow: KMK, 2009.

  21. Fenoglio, S., Bo, T., Gallina, G., and Cucco, M., Vertical distrubution in the water column of drifting stream macroinvertebrates, J. Freshwater Ecol., 2004, vol. 19, no. 3, p. 485. https://doi.org/10.1080/02705060.2004.9664923

    Article  Google Scholar 

  22. Flecker, A.S., Fish predation and the evolution of invertebrate drift periodicity: evidence from neotropical streams, Ecology, 1992, vol. 73, no. 2, p. 438. https://doi.org/10.2307/1940751

    Article  Google Scholar 

  23. Fraser, N.H.C., Metcalfe, N.B., and Thorpe, J.E., Temperature-dependent switch between diurnal and nocturnal foraging in salmon, Proc. R. Soc. B., 1993, vol. 252, p. 135. https://doi.org/10.1098/rspb.1993.0057

    Article  Google Scholar 

  24. Gisbert, E. and Williot, P., Larval behavior and effect of the timing of initial feeding on growth and survival of Siberian sturgeon (Acipenser baeri) larvae under small scale hatchery production, Aquaculture, 1997, vol. 156, nos. 1–2, p. 63. https://doi.org/10.1016/S0044-8486(97)00086-0

    Article  Google Scholar 

  25. Gorovaya, E.A., Dynamics of the mayfly community structure (Insecta, Ephemeroptera) of a small salmon river in South Primorye, Inland Water Biol., 2022, vol. 15, no. 6, p. 891. https://doi.org/10.1134/S1995082922060062

    Article  Google Scholar 

  26. Heggenes, J., Alfredsen, K., Bustos, A.A., et al., Be cool: A review of hydro-physical changes and fish responses in winter in hydropower-regulated northern streams, Environ. Biol. Fish., 2018, vol. 101, p. 1. https://doi.org/10.1007/s10641-017-0677-z

    Article  Google Scholar 

  27. Klyuchareva, O.A., On downstream and diurnal vertical migrations of bentic invertebrates in the Amur, Zool. Zh., 1963, vol. 42, no. 11, p. 1601.

    Google Scholar 

  28. Konstantinov, A.S., Sirton and benstock of the Volga near Saratov in 1966, Zool. Zh., 1969, vol. 48, no. 1, p. 20.

    Google Scholar 

  29. Koporikov, A.R. and Bogdanov, V.D., Burbot (Lota lota L., 1758) larval distribution in the streamflow during long downstream migration, Russ. J. Ecol., 2019, vol. 50, no. 5, p. 482. https://doi.org/10.1134/S1067413619050060

    Article  Google Scholar 

  30. Levanidov, V.Ya. and Levanidova, I.M., Drift of aquatic insects in the Amur River, in Sistematika i ekologiya ryb kontinental’nykh vodoemov Dal’nego Vostoka (Systematics and Ecology of Fish of Continental Water Bodies of the Russian Far), Vladivostok: Dal’nevost. Nauchn. Tsentr Akad. Nauk SSSR, 1979.

  31. Levanidova, I.M. and Levanidov, V.Ya., Diurnal migrations of benthic insect larvae in the river stream. 1. Migration of mayfly larvae in the Khor River, Zool. Zh., 1965, vol. 44, no. 3, p. 373.

    Google Scholar 

  32. Madsen, B.L., Reactions of Brachyptera risi (Morton) (Plecoptera) nymphs to water current, Oikos, 1969, vol. 20, no. 1, p. 95. https://doi.org/10.2307/3543748

    Article  Google Scholar 

  33. Malmqvist, B., Downstream drift in madeiran levadas: tests of hypotheses relating to the influence of predators on the drift of insects, Aquat. Insects, 1988, vol. 10, no. 3, p. 141. https://doi.org/10.1080/01650428809361323

    Article  Google Scholar 

  34. Matter, W.J. and Hopwood, A.J., Vertical distribution of invertebrate drift in a large river, Limnol. Oceanogr., 1980, vol. 25, no. 6, p. 1117. https://doi.org/10.4319/LO.1980.25.6.1117

    Article  Google Scholar 

  35. McLay, C.L., A study of drift in the Kakanui River, New Zealand, Aust. J. Mar. Freshwater Res., 1968, vol. 19, no. 2, p. 139. https://doi.org/10.1071/MF9680139

    Article  Google Scholar 

  36. McLay, C.L., A theory concerning the distance travelled by animals entering the drift of a stream, J. Fish Res. Board Can., 1970, vol. 27, no. 2, p. 359. https://doi.org/10.1139/f70-041

    Article  Google Scholar 

  37. McNair, J.N., Newbold, J.D., and Hart, D.D., Turbulent transport of suspended particles and dispersing benthic organisms: how long to hit bottom?, J. Theor. Biol., 1997, vol. 188, no. 1, p. 29. https://doi.org/10.1006/jtbi.1997.0453

    Article  Google Scholar 

  38. Müller-Haeckel, A. and Marvanová, L., Periodicity of aquatic hyphomycetes in the subarctic, Trans. Br. Mycol. Soc., 1979, vol. 73, no. 1, p. 109. https://doi.org/10.1016/S0007-1536(79)80080-7

    Article  Google Scholar 

  39. Naman, S.M., Rosenfeld, J.S., and Richardson, J.S., Causes and consequences of invertebrate drift in running waters: from individuals to populations and trophic fluxes, Can. J. Fish Aquat. Sci., 2016, vol. 73, p. 1292. https://doi.org/10.1139/cjfas-2015-0363

    Article  Google Scholar 

  40. Oldmeadow, D.F., Lancaster, J., and Rice, S.P., Drift and settlement of stream insects in a complex hydraulic environment, Freshwater Biol., 2010, vol. 55, no. 5, p. 1020. https://doi.org/10.1111/j.1365-2427.2009.02338.x

    Article  Google Scholar 

  41. Pavlov, D.S. and Skorobogatov, M.A., Migratsii ryb v zaregulirovannykh rekakh (Fish Migrations in Regulated Rivers), Moscow: KMK, 2014.

  42. Pavlov, K.F., Romankov, P.G., and Noskov, A.A., Primery i zadachi po kursu protsessov i apparatov khimicheskoi tekhnologii (Examples and Tasks on the Course of Processes and Apparatuses of Chemical Technology), Leningrad: Khimiya, 1987.

  43. Semenchenko, A.Yu., Zimovka ryb v vodotokakh zapovednika “Kedrovaya pad”, in Presnovodnaya fauna zapovednika “Kedrovaya pad” (Freshwater fauna of the. “Kedrovaya Pad” Nature Reserve), Vladivostok: Dal’nevost. Nauchn. Tsentr Akad. Nauk SSSR, 1977.

  44. Shubina, V.N., Bentos lososevykh rek Urala i Timana (Benthos of salmon rivers of the Ural and Timan Mountains), St. Petersburg: Nauka, 2006.

  45. Statzner, B., Gore, J.A., and Resh, V.H., Hydraulic stream ecology: observed patterns and potential applications, J. North Am. Benthol. Soc., 1988, vol. 7, no. 4, p. 307. https://doi.org/10.2307/1467296

    Article  Google Scholar 

  46. Taradina, D.G., Pavlov, D.S., and Lupandin, A.I., Relationship between the vertical distribution of juvenile fish during downstream migration and their buoyancy and flow turbulence, Vopr. Ikhtiol., 1997, vol. 37, no. 4, p. 532.

    Google Scholar 

  47. Tarasov, A.G. and Tarasova, G.V., Bentostock of the lower part of the middle course of the Ural River, Biol. Vnutr. Vod, 1997, no. 1, p. 59.

  48. Townsend, C.R., The patch dynamics concept of stream community ecology, J. North Am. Benthol. Soc., 1989, vol. 8, no. 1, p. 36. https://doi.org/10.2307/1467400

    Article  Google Scholar 

  49. Travina, T.N., Drift donnykh bespozvonochnykh v period ledostava v r. Bol’shaya (Zapadnaya Kamchatka), in Chteniya pamyati V.Ya. Levanidova (Readings in Memory of Professor V.Ya. Levanidov), 2014, vol. 6.

  50. Valdimarsson, S.K. and Metcalfe, N.B., Shelter selection in juvenile Atlantic salmon, or why do salmon seek shelter in winter?, J. Fish Biol., 1998, vol. 52, no. 1, p. 42. https://doi.org/10.1111/j.1095-8649.1998.tb01551.x

    Article  Google Scholar 

  51. Vannote, R.L., Minshall, G.W., Cummins, K.W., et al., The river continuum concept, Can. J. Fish Aquat. Sci., 1980, vol. 37, no. 1, p. 130. https://doi.org/10.1139/f80-017

    Article  Google Scholar 

  52. Vasil’ev, N.G., Pankrat’ev, A.G., and Panov, E.N., Zapovednik “Kedrovaya pad'" (Nature Reserve “Kedrovaya Pad’”), Vladivostok: Dal’nevost. Knizh. Izd., 1965.

  53. Weissenberger, J., Spatz, H.-Ch., Emanns, A., and Schwoerbel, J., Measurement of lift and drag forces in the mN range experienced by benthic arthropods at flow velocities below 1.2 m s‒1, Freshwater Biol., 1991, vol. 25, no. 1, p. 21. https://doi.org/10.1111/j.1365-2427.1991.tb00469.x

    Article  Google Scholar 

  54. Zhivoglyadov, A.A., Struktura i mekhanizmy funktsionirovaniya soobshchestv ryb malykh nerestovykh rek ostrova Sakhalin (Structure and Mechanisms of Functioning of Fish Communities in Small Rivers of Sakhalin Island), Moscow: Vseross. Nauchno-Issled. Inst. Rybn. Knoz. Okeanogr., 2004.

Download references

Funding

This work was carried out as part of the State Task of the Ministry of Science and Higher Education of the Russian Federation, no. 121031000147-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Astakhov.

Ethics declarations

Conflict of interests. The author declares that he has no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astakhov, M.V. Winter Dynamics of the Vertical Distribution of Drifting Invertebrates in a Small Salmon River. Inland Water Biol 16, 490–502 (2023). https://doi.org/10.1134/S1995082923030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082923030033

Keywords:

Navigation