Skip to main content
Log in

Impact of alternating electromagnetic field of ultralow and low frequencies upon survival, development, and production parameters in Daphnia magna straus (Crustacea, Cladocera)

  • Zooplankton, Zoobenthos and Zooperiphyton
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The impact of alternating magnetic field (AMF) of ultralow and low frequencies during a sevenday-long exposure on Daphnia magna Straus was studied. It is shown that AMF may decrease the survival and the time it takes to reach sexual maturity. AMF with a frequency of 500 Hz has the most pronounced negative impact upon survival and maturation. AMF of 50 Hz accelerates maturation. In a chronic experiment at 500 Hz, the share of vital offspring increased, while the sizes of newborns decreased in parent specimens that matured under the impact of a magnetic field. The action of a 500 Hz AMF on daphnias before littering of offspring leads to an increase in the number of newborns in the reproductive period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binghi, V.N., Magnitobiologiya: eksperimenty i modeli (Magnetic Biology: Experiments and Models), Moscow: MILTA, 2002.

    Google Scholar 

  2. Grefner, I.M., Yakovleva, T.L., and Boreisha, I.K., Influence of Electromagnetic Radiation Upon Development of Brown Frog (Rana temporaria L.) Tadpoles, Ekologiya, 1998, no. 2, pp. 154–155.

  3. Krylov, V.V. and Chebotareva, Yu.V., Incubation of Roach, Rutilus rutilus (L.), Eggs in the Alternating Electromagnetic Field with Frequency of 500 Hz Causes Anomalies of Axial Skeleton in Yearlings, in Ekologiya Presnovodnykh Ekosistem i Sostoyanie Zdorov’ya Naseleniya, Orenburg: Dimur, 2006, pp. 80–86.

    Google Scholar 

  4. Makrushin, A.V., Study into Adaptations Related to Reproduction in Cladocera, Gidrobiol. Zh., 1968, vol. 4, no. 5, pp. 72–76.

    Google Scholar 

  5. Makrushin, A.V., Some Features of Reproductive System in Cladocera, Zool. Zh., 1976, vol. 55, no. 8, pp. 1143–1148.

    Google Scholar 

  6. Makrushin, A.V., Evolution of Reproductive System in Cladoceran Crustaceans, in Sovremennye problemy izucheniya vetvistousykh rakoobraznykh (Modern Problems of Investigation of Cladocean Crustaceans), St. Petersburg: Gidrometeoizdat, 1992, pp. 46–64.

    Google Scholar 

  7. Metodika opredeleniya toksichnosti vody po smertnosti i izmeneniyu plodovitosti dafnii (The Method of Determination of Water Toxicity Based on the Mortality and Changes in Fecundity in Daphnia), Moscow: Akvaros, 1999.

  8. Plokhinskii, N.A., Biometriya (Biometry), Moscow: Mosk. Gos. Univ., 1970.

    Google Scholar 

  9. Shaposhnikov, G.Kh., Morphological Divergence and Convergence in the Experiments with Aphides (Homortera, Aphidinea), Entomol. Obozr., 1965, vol. 44, no. 1, pp. 3–25.

    Google Scholar 

  10. Burns, C.W., Effects of Crowding and Different Food Levels on Growth and Reproductive Investment of Daphnia, Oecologia, 1995, vol. 101, no. 2, pp. 234–244.

    Article  Google Scholar 

  11. Chernoff, N., Rogers, J.M., and Kavet, R., A Review of the Literature on Potential Reproductive and Developmental Toxicity of Electric and Magnetic Fields, Toxicology, 1992, vol. 74, nos. 2–3, pp. 91–126.

    Article  PubMed  CAS  Google Scholar 

  12. Green, J., Seasonal Variation in Egg Production by Cladocera, J. Anim. Ecol., 1966, vol. 35, no. 1, pp. 77–104.

    Article  Google Scholar 

  13. Juutilainen, J., Effects of Low-Frequency Magnetic Fields on Embryonic Development and Pregnancy, Scand. J. Work Environ. Health, 1991, no. 17(3), pp. 149–158.

  14. Juutilainen, J. and Lang, S., Genotoxic, Carcinogenic and Teratogenic Effects of Electromagnetic Fields. Introduction and Overview, Mutat. Res., 1997, vol. 387, pp. 165–171.

    Article  PubMed  CAS  Google Scholar 

  15. McCann, J., Dietrich, F., and Rafferty, Ch., The Genotoxic Potential of Electric and Magnetic Fields: An Update, Mutat. Res., 1998, vol. 411, no. 2, pp. 45–86.

    PubMed  CAS  Google Scholar 

  16. Merchant, C.J., Renew, D.C., and Swanson, J., Exposures To Power-Frequency Magnetic Fields in the Home, J. Radiol. Prot., 1994, vol. 14, pp. 77–87.

    Article  Google Scholar 

  17. Peters, R.N. and De Bernardi R., Daphnia, Mem. Ist. Ital. Idrobiol., 1987, vol. 45, pp. 1–502.

    Google Scholar 

  18. Skauli, K.S., Reitan, J.B., and Walther, B.T., Hatching in Zebrafish (Danio rerio) Embryos Exposed To a 50 Hz Magnetic Field, Bioelectromagnetics, 2000, vol. 21, no. 5, pp. 407–410.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Krylov.

Additional information

Original Russian Text © V.V. Krylov, 2008, published in Biologiya Vnutrennikh Vod, No. 2, 2008, pp. 33–39.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krylov, V.V. Impact of alternating electromagnetic field of ultralow and low frequencies upon survival, development, and production parameters in Daphnia magna straus (Crustacea, Cladocera). Inland Water Biol 1, 134–140 (2008). https://doi.org/10.1134/S1995082908020053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082908020053

Keywords

Navigation