Skip to main content
Log in

On General Representations of Papkovich–Neuber Solutions in Gradient Elasticity

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the article we conside the general model of the gradient theory of elasticity, in which the deformed state energy is determined in addition to classical deformations by two additional modules with a dilatation gradient and a double displacement rotor. It is shown that the general displacement vector in this model can be represented as a superposition of classical displacements and a cohesive field that satisfies the Helmholtz-type scaling equation with two scaling parameters. Based on this expansion a generalized Papkovich–Neuber representation is proved, which expresses displacements in the gradient elasticity in terms of auxiliary potentials that satisfy the Helmholtz, Laplace, and Poisson equations. With its help fundamental systems of solutions in the gradient elasticity are constructed, which are equivalent to a system of harmonic polynomials. These systems have the property of completeness and minimality and are used to approximate solutions in problems of the gradient theory of elasticity. For the case of inhomogeneous media with multilayer spherical inclusions these solutions analytically exactly satisfy all contact conditions at the interphase boundaries. As an example, an exact solution of the Eshelby problem for a multilayer spherical inclusion in the uniform strain field is given. This solution can be used to evaluate the effective properties of the scale-effect composites using the Christensen–Eshelby method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. R. D. Mindlin, ‘‘Micro-structure in linear elasticity,’’ Arch. Rat. Mech. Anal. 16, 51–78 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. D. Mindlin and H. F. Tiersten, ‘‘Effects of couple-stresses in linear elasticity,’’ Arch. Rat. Mech. Anal. 11, 415–448 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Lurie, P. Belov, D. Volkov-Bogorodsky, and N. Tuchkova, ‘‘Interphase layer theory and application in the mechanics of composite materials,’’ J. Mater. Sci. 41, 6693–6707 (2006).

    Article  Google Scholar 

  4. D. B. Volkov-Bogorodsky, Yu. G. Evtushenko, V. I. Zubov, and S. A. Lurie, ‘‘Calculation of deformations in nanocomposites using the block multipole method with the analytical–numerical account of the scale effects,’’ Comput. Math. Math. Phys. 46, 1234–1253 (2006).

    Article  MathSciNet  Google Scholar 

  5. S. Lurie, D. Volkov-Bogorodsky, A. Leontiev, and E. Aifantis, ‘‘Eshelby’s inclusion problem in the gradient theory of elasticity: Applications to composite materials,’’ Int. J. Eng. 49, 1517–1525 (2011).

    MathSciNet  MATH  Google Scholar 

  6. A. Charalambopoulos, T. Gortsas and D. Polyzos, ‘‘On representing strain gradient elastic solutions of boundary value problems by encompassing the classical elastic solution,’’ Mathematics 10, 1152 (2022).

    Article  Google Scholar 

  7. Y. Solyaev, S. Lurie, and V. Korolenko, ‘‘Three-phase model of particulate composites in second gradient elasticity,’’ Eur. J. Mech. A 78, 103853 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Placidi and A. R. El. Dhaba, ‘‘Semi-inverse method à la saintvenant for two-dimensional linear isotropic homogeneous second-gradient elasticity,’’ Math. Mech. Solids 22, 919–937 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Lazar, G. A. Maugin, and E. C. Aifantis, ‘‘Dislocations in second strain gradient elasticity,’’ Int. J. Solids Struct. 43, 1787–1817 (2006).

    Article  MATH  Google Scholar 

  10. D. B. Volkov-Bogorodskii and S. A. Lurie, ‘‘Eshelby integral formulas in gradient elasticity,’’ Mech. Solids 45, 648–656 (2010).

    Article  Google Scholar 

  11. D. B. Volkov-Bogorodskiy and E. I. Moiseev, ‘‘Generalized Trefftz method in the gradient elasticity theory,’’ Lobachevskii J. Math. 42, 1944–1953 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. E. Gurtin, The Linear Theory of Elasticity, Vol. IVa-2 of Encyclopedia of Physics, Ed. by S. Fluegge (Springer, Berlin, 1972).

    Google Scholar 

  13. Y. O. Solyaev, ‘‘Complete general solutions for equilibrium equations of isotropic strain gradient elasticity,’’ arXiv: 2207.08863 [physics.class-ph] (2022).

  14. S. A. Lurie, P. A. Belov, and Y. O. Solyaev, ‘‘On possible reduction of gradient theories of elasticity,’’ in Sixty Shades of Generalized Continua, Ed. by H. Altenbach, A. Berezovski, F. dell’Isola, and A. Porubov, Vol. 170 of Advanced Structured Materials (Springer, Cham, 2023). https://doi.org/10.1007/978-3-031-26186-2_30

  15. S. A. Lurie, P. A. Belov, Y. O. Solyaev, and E. C. Aifantis, ‘‘On one class of applied gradient models with simplified boundary problems,’’ Mater. Phys. Mech. 32, 353–369 (2017).

    Google Scholar 

  16. P. M. Morse and H. Feshbach, Methods of Theoretical Physics. Part 2 (McGraw-Hill, New York, 1953).

    MATH  Google Scholar 

  17. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Vol. 39 of Int. Series of Monographs on Pure and Applied Mathematics (Pergamon, New York, 1963).

  18. A. I. Borisenko and I. E. Tarapov, Vector Analysis and the Beginning of Tensor Analysis (Vyssh. Shkola, Moscow, 1966) [in Russian].

    Google Scholar 

  19. P. F. Papkovich, ‘‘Solution générale des équations différentielles fondamentales de l’élasticité, exprimée par trois fonctiones harmoniques,’’ C. R. Acad. Sci. (Paris) 195, 513–515 (1932).

    Google Scholar 

  20. H. Papkovich, ‘‘Ein neuer ansatz zur lösung räumlicher probleme der elastizitätstheorie,’’ Zeitschr. Angew. Math. Mech. 14, 203–212 (1934).

    Article  Google Scholar 

  21. V. S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971).

    MATH  Google Scholar 

  22. N. S. Koshlyakov, E. B. Glinner, and M. M. Smirnov, Differential Equations of Mathematical Physics (North-Holland, Amsterdam, 1964).

    Google Scholar 

  23. A. P. Zielinski, ‘‘On trial functions applied in the generalized Trefftz method,’’ Adv. Eng. Software 24, 147–155 (1995).

    Article  MATH  Google Scholar 

  24. A. P. Zielinski and O. C. Zienkiewicz, ‘‘Generalized finite element analysis with T-complete boundary solution functions,’’ Int. J. Num. Meth. Eng. 21, 509–528 (1985).

    Article  MATH  Google Scholar 

  25. D. B. Volkov-Bogorodsky, G. B. Sushko, and S. A. Kharchenko, ‘‘Combined MPI+threads parallel realization of the block method for modelling thermal processes in structurally inhomogeneous media,’’ Vychisl. Metody Program. 11, 127–136 (2010).

    Google Scholar 

  26. I. Vekua, Generalized Analytic Functions (Pergamon, Oxford, 1962).

    MATH  Google Scholar 

  27. N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media (Kluwer Academic, Dordrecht, 1989).

    Book  MATH  Google Scholar 

  28. J. D. Eshelby, ‘‘The determination of the elastic field of an ellipsoidal inclusion and related problems,’’ Proc. R. Soc. London, Ser. A 241, 376–396 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  29. R. M. Christensen, Mechanics of Composite Materials (Wiley, New York, 1979).

    Google Scholar 

  30. S. Lurie, D. Volkov-Bogorodskii, and N. Tuchkova, ‘‘Exact solution of Eshelby–Christensen problem in gradient elasticity for composites with spherical inclusions,’’ Acta Mech. 227, 127–138 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  31. D. B. Volkov-Bogorodskii and S. A. Lurie, ‘‘Solution of the Eshelby problem in gradient elasticity for multilayer spherical inclusions,’’ Mech. Solids 51, 161–176 (2016).

    Article  MATH  Google Scholar 

  32. S. Lurie, D. Volkov-Bogorodskiy, E. Moiseev, and A. Kholomeeva, ‘‘Radial multipliers in solutions of the Helmholtz equations,’’ Integr. Transforms Spec. Funct. 30, 254–263 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  33. D. B. Volkov-Bogorodskiy and E. I. Moiseev, ‘‘Generalized Eshelby problem in the gradient theory of elasticity,’’ Lobachevskii J. Math. 41, 2083–2089 (2020).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 23-11-00275, issued to the Institute of Applied Mechanics of RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Lurie, D. B. Volkov-Bogorodskiy or P. A. Belov.

Additional information

(Submitted by E. A. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lurie, S.A., Volkov-Bogorodskiy, D.B. & Belov, P.A. On General Representations of Papkovich–Neuber Solutions in Gradient Elasticity. Lobachevskii J Math 44, 2336–2351 (2023). https://doi.org/10.1134/S199508022306032X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022306032X

Keywords:

Navigation