Skip to main content
Log in

Mechanistic Model of Gravitation

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The theory of elasticity of the defect-free space of events in 4D is proposed as a variant of the mechanistic theory of gravity. A 4D displacement vector is determined, the fourth component of which is the local non-uniform time of the physical process that generates the gravitational field. A consistent mechanistic theory of physical processes in a defect-free space of events generating a gravitational field is constructed. We believe that any displacement field determines some physical process, which is generated by the corresponding fields of external influences. Each such displacement field can be associated with a tensor stress field, which can be interpreted as a gravitational effect on a test body, as well as a conserved energy-momentum tensor. The proposed theory is radically different from Einstein’s gravitational theory, since a non-zero energy-momentum tensor exists for any physical process determined by equilibrium equations written in displacements, and the Ricci or Einstein (Saint-Venant) tensor for solutions in displacements is always equal to zero. We propose to consider General Relativity (GR) as a variant of the 4D partial theory of elasticity of the defective space of events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. S. A. Lurie and P. A. Belov, ‘‘On the nature of the relaxation time, the Maxwell–Cattaneo and Fourier law in the thermodynamics of a continuous medium, and the scale effects in thermal conductivity,’’ Continuum Mech. Thermodyn. 32, 709–728 (2020). https://doi.org/10.1007/s00161-018-0718-7

    Article  MathSciNet  MATH  Google Scholar 

  2. E. V. Lomakin, S. A. Lurie, P. A. Belov, and L. N. Rabinskiy, ‘‘On the generalized heat conduction laws in the reversible thermodynamics of a continuous medium,’’ Dokl. Phys. 63, 503–507 (2018). https://doi.org/10.1134/S102833581812011X

    Article  Google Scholar 

  3. S. A. Lurie and P. A. Belov, ‘‘Variational formulation of coupled hydrodynamic problems,’’ J. Appl. Mech. Tech. Phys. 62, 828–841 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. A. Lurie, P. A. Belov, and Y. O. Solyaev, ‘‘Mechanistic model of generalized non-antisymmetrical electrodynamics,’’ in Dynamical Processes in Generalized Continua and Structures, Ed. by H. Altenbach, A. Belyaev, V. Eremeyev, A. Krivtsov, and A. Porubov, Vol. 103 of Advanced Structured Materials (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-11665-1

  5. V. V. Vasiliev and L. V. Fedorov, ‘‘To the solution of a spherically symmetric problem of general relativity,’’ J. Mod. Phys. 14, 147–159 (2023). https://doi.org/10.4236/jmp.2023.142010

    Article  Google Scholar 

  6. V. V. Vasiliev and L. V. Fedorov, ‘‘To the complete set of equations for a static problem of general relativity,’’ J. Mod. Phys. 10, 1401–1415 (2019). https://doi.org/10.4236/jmp.2019.1012093

    Article  Google Scholar 

  7. V. V. Vasiliev and L. V. Fedorov, ‘‘Analogy between the equations of elasticity and the general theory of relativity,’’ Mech. Solids 56, 404–413 (2021). https://doi.org/10.3103/S0025654421030134

    Article  Google Scholar 

  8. V. V. Vasiliev and L. V. Fedorov, ‘‘Stress functions in elasticity theory,’’ Mech. Solids 57, 770–778 (2022).

    Article  MATH  Google Scholar 

  9. V. V. Vasiliev and L. V. Fedorov, ‘‘Linearized equations of general relativity and the problem of reduction to the Newton theory,’’ J. Mod. Phys. 11, 221–236 (2020).

    Article  Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, London, 1971).

  11. I. S. Sokolnikoff, Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua (Wiley, New York, 1964).

    MATH  Google Scholar 

  12. P. A. Belov and S. A. Lurie, ‘‘On the general geometric theory of defective media,’’ Phys. Mesomeh. 10 (6), 63–67 (2007).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 23-11-00275.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. A. Belov or S. A. Lurie.

Additional information

(Submitted by A. M. Elizarov)

Appendices

Appendix I

1.1 PROPERTIES OF LEVI–CIVITA TENSORS IN 4D

Tensor product of Levi-Civita tensors in 4D:

$$e_{ijmn}e_{pqab}={}\delta_{ip}[\delta_{jq}(\delta_{ma}\delta_{nb}-\delta_{mb}\delta_{na})-\delta_{ja}(\delta_{mq}\delta_{nb}-\delta_{mb}\delta_{nq})+\delta_{jb}(\delta_{mq}\delta_{na}-\delta_{ma}\delta_{nq})]$$
$${}-\delta_{iq}[\delta_{jp}(\delta_{ma}\delta_{nb}-\delta_{mb}\delta_{na})-\delta_{ja}(\delta_{mp}\delta_{nb}-\delta_{mb}\delta_{np})+\delta_{jb}(\delta_{mp}\delta_{na}-\delta_{ma}\delta_{np})]$$
$${}+\delta_{ia}[\delta_{jp}(\delta_{mq}\delta_{nb}-\delta_{mb}\delta_{nq})-\delta_{jq}(\delta_{mp}\delta_{nb}-\delta_{mb}\delta_{np})+\delta_{jb}(\delta_{mp}\delta_{nq}-\delta_{mq}\delta_{np})]$$
$${}-\delta_{ib}[\delta_{jq}(\delta_{ma}\delta_{np}-\delta_{mp}\delta_{na})-\delta_{ja}(\delta_{mq}\delta_{np}-\delta_{mp}\delta_{nq})+\delta_{jp}(\delta_{mq}\delta_{na}-\delta_{ma}\delta_{nq})].$$

Convolutions of Levi-Civita tensors in 4D over one pair of indices:

$$e_{ijmb}e_{pqab}={}\delta_{ip}[3\delta_{jq}\delta_{ma}-3\delta_{ja}\delta_{mq}+(\delta_{mq}\delta_{ja}-\delta_{ma}\delta_{jq})]$$
$${}-\delta_{iq}[\delta_{jp}(\delta_{ma}4-\delta_{ma})-\delta_{ja}(\delta_{mp}4-\delta_{mp})+(\delta_{mp}\delta_{ja}-\delta_{ma}\delta_{jp})]$$
$${}+\delta_{ia}[\delta_{jp}(\delta_{mq}4-\delta_{mq})-\delta_{jq}(\delta_{mp}4-\delta_{mp})+(\delta_{mp}\delta_{jq}-\delta_{mq}\delta_{jp})]$$
$${}-[\delta_{jq}(\delta_{ma}\delta_{ip}-\delta_{mp}\delta_{ia})-\delta_{ja}(\delta_{mq}\delta_{ip}-\delta_{mp}\delta_{iq})+\delta_{jp}(\delta_{mq}\delta_{ia}-\delta_{ma}\delta_{iq})]$$
$${}={}2\delta_{ip}(\delta_{jq}\delta_{ma}-\delta_{ja}\delta_{mq})-2\delta_{iq}(\delta_{jp}\delta_{ma}-\delta_{ja}\delta_{mp})+2\delta_{ia}(\delta_{jp}\delta_{mq}-\delta_{jq}\delta_{mp})$$
$${}-[(\delta_{jq}\delta_{ma}-\delta_{ja}\delta_{mq})\delta_{ip}-(\delta_{jp}\delta_{ma}-\delta_{ja}\delta_{mp})\delta_{iq}+(\delta_{jp}\delta_{mq}-\delta_{jq}\delta_{mp})\delta_{ia}]$$
$${}={}\delta_{ip}(\delta_{jq}\delta_{ma}-\delta_{ja}\delta_{mq})-\delta_{iq}(\delta_{jp}\delta_{ma}-\delta_{ja}\delta_{mp})+\delta_{ia}(\delta_{jp}\delta_{mq}-\delta_{jq}\delta_{mp}).$$

Convolutions of Levi-Civita tensors in 4D over two, three and four pairs of indices:

$$e_{ijab}e_{pqab}=\delta_{ip}(\delta_{jq}4-\delta_{jq})-\delta_{iq}(\delta_{jp}4-\delta_{jp})+(\delta_{jp}\delta_{iq}-\delta_{jq},\delta_{ip})$$
$${}=3(\delta_{ip}\delta_{jq}-\delta_{iq}\delta_{jp})-(\delta_{ip}\delta_{jq}-\delta_{iq}\delta_{jp})=2(\delta_{ip}\delta_{jq}-\delta_{iq}\delta_{jp}),$$
$$e_{iqab}e_{pqab}=2(\delta_{ip}4-\delta_{ip})=6\delta_{ip},$$
$$e_{pqab}e_{pqab}=24.$$

Appendix II

2.1 RIEMANN–CHRISTOFFEL COMPATIBILITY EQUATIONS IN 4D

Using equation (15) and results of Appendix I, we can get Riemann–Christoffel compatibility equations

$$R_{pqmn}=\varepsilon_{ia,bj}e_{ijmn}e_{pqab}=0,$$
$$R_{pqmn}=\varepsilon_{ia,bj}\{\delta_{ip}[\delta_{jq}(\delta_{ma}\delta_{nb}-\delta_{mb}\delta_{na})-\delta_{ja}(\delta_{mq}\delta_{nb}-\delta_{mb}\delta_{nq})+\delta_{jb}(\delta_{mq}\delta_{na}-\delta_{ma}\delta_{nq})]$$
$${}-\delta_{iq}[\delta_{jp}(\delta_{ma}\delta_{nb}-\delta_{mb}\delta_{na})-\delta_{ja}(\delta_{mp}\delta_{nb}-\delta_{mb}\delta_{np})+\delta_{jb}(\delta_{mp}\delta_{na}-\delta_{ma}\delta_{np})]$$
$${}+\delta_{ia}[\delta_{jp}(\delta_{mq}\delta_{nb}-\delta_{mb}\delta_{nq})-\delta_{jq}(\delta_{mp}\delta_{nb}-\delta_{mb}\delta_{np})+\delta_{jb}(\delta_{mp}\delta_{nq}-\delta_{mq}\delta_{np})]$$
$${}-\delta_{ib}[\delta_{jq}(\delta_{ma}\delta_{np}-\delta_{mp}\delta_{na})-\delta_{ja}(\delta_{mq}\delta_{np}-\delta_{mp}\delta_{nq})+\delta_{jp}(\delta_{mq}\delta_{na}-\delta_{ma}\delta_{nq})]\}$$
$${}=\varepsilon_{pa,bj}[\delta_{jq}(\delta_{ma}\delta_{nb}-\delta_{mb}\delta_{na})-\delta_{ja}(\delta_{mq}\delta_{nb}-\delta_{mb}\delta_{nq})+\delta_{jb}(\delta_{mq}\delta_{na}-\delta_{ma}\delta_{nq})]$$
$${}-\varepsilon_{qa,bj}[\delta_{jp}(\delta_{ma}\delta_{nb}-\delta_{mb}\delta_{na})-\delta_{ja}(\delta_{mp}\delta_{nb}-\delta_{mb}\delta_{np})+\delta_{jb}(\delta_{mp}\delta_{na}-\delta_{ma}\delta_{np})]$$
$${}+\varepsilon_{ii,bj}[\delta_{jp}(\delta_{mq}\delta_{nb}-\delta_{mb}\delta_{nq})-\delta_{jq}(\delta_{mp}\delta_{nb}-\delta_{mb}\delta_{np})+\delta_{jb}(\delta_{mp}\delta_{nq}-\delta_{mq}\delta_{np})]$$
$${}-\varepsilon_{ia,ij}[\delta_{jq}(\delta_{ma}\delta_{np}-\delta_{mp}\delta_{na})+\delta_{ja}(\delta_{mq}\delta_{np}-\delta_{mp}\delta_{nq})-\delta_{jp}(\delta_{mq}\delta_{na}-\delta_{ma}\delta_{nq})]$$
$${}=\varepsilon_{pa,bq}(\delta_{ma}\delta_{nb}-\delta_{mb}\delta_{na})-\varepsilon_{pa,ba}(\delta_{mq}\delta_{nb}-\delta_{mb}\delta_{nq})+\Delta\varepsilon_{pa}(\delta_{mq}\delta_{na}-\delta_{ma}\delta_{nq})$$
$${}-\varepsilon_{qa,bp}(\delta_{ma}\delta_{nb}-\delta_{mb}\delta_{na})+\varepsilon_{qa,ba}(\delta_{mp}\delta_{nb}-\delta_{mb}\delta_{np})-\Delta\varepsilon_{qa}(\delta_{mp}\delta_{na}-\delta_{ma}\delta_{np})$$
$${}+\varepsilon_{ii,bp}(\delta_{mq}\delta_{nb}-\delta_{mb}\delta_{nq})-\varepsilon_{ii,bq}(\delta_{mp}\delta_{nb}-\delta_{mb}\delta_{np})+\Delta\varepsilon_{ii}(\delta_{mp}\delta_{nq}-\delta_{mq}\delta_{np})$$
$${}-\varepsilon_{ia,iq}(\delta_{ma}\delta_{np}-\delta_{mp}\delta_{na})+\varepsilon_{ia,ia}(\delta_{mq}\delta_{np}-\delta_{mp}\delta_{nq})-\varepsilon_{ia,ip}(\delta_{mq}\delta_{na}-\delta_{ma}\delta_{nq})$$
$${}=(\varepsilon_{pm,nq}-\varepsilon_{pn,mq})-(\varepsilon_{pa,na}\delta_{mq}-\varepsilon_{pa,ma}\delta_{nq})+(\Delta\varepsilon_{pn}\delta_{mq}-\Delta\varepsilon_{pm}\delta_{nq})$$
$${}-(\varepsilon_{qm,np}-\varepsilon_{qn,mp})+(\varepsilon_{qa,na}\delta_{mp}-\varepsilon_{qa,ma}\delta_{np})-(\Delta\varepsilon_{qn}\delta_{mp}-\Delta\varepsilon_{qm}\delta_{np})$$
$${}+(\varepsilon_{ii,np}\delta_{mq}-\varepsilon_{ii,mp}\delta_{nq})-(\varepsilon_{ii,nq}\delta_{mp}-\varepsilon_{ii,mq}\delta_{np})+(\Delta\varepsilon_{ii}\delta_{mp}\delta_{nq}-\Delta\varepsilon_{ii}\delta_{mq}\delta_{np})$$
$${}-(\varepsilon_{im,iq}\delta_{np}-\varepsilon_{in,iq}\delta_{mp})+(\varepsilon_{ia,ia}\delta_{mq}\delta_{np}-\varepsilon_{ia,ia}\delta_{mp}\delta_{nq})-(\varepsilon_{in,ip}\delta_{mq}-\varepsilon_{im,ip}\delta_{nq})=0.$$

Appendix III

3.1 VARIATIONAL EQUATION OF MECHANISTIC THEORY OF RG

Let us consider the conditional functional (37) and transform it using the procedure of successive integration by parts. We obtain

$$\delta\tilde{L}={}\int\limits_{0}^{ict}\biggl{\{}mc^{2}-\int\limits_{V_{3}}\biggl{[}(C_{ijmn}N_{k}N_{j})R_{m,n}R_{i,k}-\frac{1}{2}C_{abmn}R_{a,b}R_{m,n}\biggr{]}dV_{3}\biggr{\}}\delta\Lambda\,dx_{4}$$
$${}-\int\limits_{0}^{ict}\int\limits_{V_{3}}[C_{ijmn}R_{m,n}\delta R_{i,k}(\delta_{jk}^{\ast}+N_{j}N_{k})+\Lambda(C_{ijpq}N_{k}N_{q})R_{p,k}\delta R_{i,j}$$
$${}+\Lambda(C_{iqmn}N_{j}N_{q})R_{m,n}\delta R_{i,j}-\Lambda C_{ijmn}R_{m,n}\delta R_{i,j}]dV_{3}\}\,dx_{4}$$
$${}=\int\limits_{0}^{ict}\biggl{\{}mc^{2}-\int\limits_{V_{3}}\biggl{[}(C_{ijmn}N_{k}N_{j})R_{m,n}R_{i,k}-\frac{1}{2}C_{abmn}R_{a,b}R_{m,n}\biggr{]}\,dV_{3}\biggr{\}}\delta\Lambda\,dx_{4}$$
$${}-\int\limits_{0}^{ict}\int\limits_{V_{3}}\biggl{[}C_{ijmn}R_{m,n}\delta(R_{i,k}\delta_{jk}^{\ast})+C_{ijmn}R_{m,n}\delta(R_{i,k}N_{j}N_{k})$$
$${}+\Lambda(C_{ijpq}N_{r}N_{q})R_{p,r}\delta(R_{i,k}\delta_{jk}^{\ast})+\Lambda(C_{ijpq}N_{r}N_{q})R_{p,r}\delta(R_{i,k}N_{j}N_{k})$$
$${}+\Lambda(C_{iqmn}N_{j}N_{q})R_{m,n}\delta(R_{i,k}\delta_{jk}^{\ast})+\Lambda(C_{iqmn}N_{j}N_{q})R_{m,n}\delta(R_{i,k}N_{j}N_{k})$$
$${}-\Lambda C_{ijmn}R_{m,n}\delta(R_{i,k}\delta_{jk}^{\ast})-\Lambda C_{ijmn}R_{m,n}\delta(R_{i,k}N_{j}N_{k})\biggr{]}dV_{3}\}\,dx_{4}$$
$${}=\int\limits_{0}^{ict}\biggl{\{}mc^{2}-\int\limits_{V_{3}}\biggl{[}(C_{ijmn}N_{k}N_{j})R_{m,n}R_{i,k}-\frac{1}{2}C_{abmn}R_{a,b}R_{m,n}\biggr{]}dV_{3}\biggr{\}}\delta\Lambda\,dx_{4}$$
$${}-\int\limits_{0}^{ict}\int\limits_{V_{3}}\bigl{[}(C_{ijmn}R_{m,n}+\Lambda C_{ijpq}N_{r}N_{q}R_{p,r}+\Lambda C_{iqmn}N_{j}N_{q}R_{m,n}-\Lambda C_{ijmn}R_{m,n})\delta(R_{i,k}\delta_{jk}^{\ast})$$
$${}+(C_{ijmn}R_{m,n}+\Lambda C_{ijpq}N_{r}N_{q}R_{p,r}+\Lambda C_{iqmn}N_{j}N_{q}R_{m,n}-\Lambda C_{ijmn}R_{m,n})\delta(R_{i,k}N_{j}N_{k})\bigr{]}dV_{3}\biggr{\}}\,dx_{4}$$
$${}={}\int\limits_{0}^{ict}{\int\limits_{V_{3}}}(C_{ijmn}R_{m,nk}+\Lambda C_{ijpq}N_{r}N_{q}R_{p,rk}+\Lambda C_{iqmn}N_{j}N_{q}R_{m,nk}-\Lambda C_{ijmn}R_{m,nk})\delta_{jk}^{\ast}\delta R_{i}\,dV_{3}\,dx_{4}$$
$${}+\int\limits_{0}^{ict}{\int\limits_{V_{3}}}(C_{ijmn}R_{m,nk}+\Lambda C_{ijpq}N_{r}N_{q}R_{p,rk}+\Lambda C_{iqmn}N_{j}N_{q}R_{m,nk}-\Lambda C_{ijmn}R_{m,nk})N_{j}N_{k}\delta R_{i}\,dV_{3}\,dx_{4}$$
$${}-\int\limits_{0}^{ict}\mathop{{\int\!\!\!\!\!\int}\mskip-21.0mu \bigcirc}\bigl{(}C_{ijmn}R_{m,n}+\Lambda C_{ijpq}N_{r}N_{q}R_{p,r}+\Lambda C_{iqmn}N_{j}N_{q}R_{m,n}-\Lambda C_{ijmn}R_{m,n}\bigr{)}n_{j}\delta R_{i}\,dF_{3}\,dx_{4}$$
$${}+\int\limits_{V_{3}}\bigl{(}C_{ijmn}R_{m,n}+\Lambda C_{ijpq}N_{r}N_{q}R_{p,r}+\Lambda C_{iqmn}N_{j}N_{q}R_{m,n}-\Lambda C_{ijmn}R_{m,n}\bigr{)}N_{j}N_{k}\delta R_{i}]dV_{3}|_{0}^{x_{4}=x_{4}}$$
$${}+\int\limits_{0}^{ict}\biggl{\{}mc^{2}-\int\limits_{V_{3}}\biggl{[}(C_{ijmn}N_{k}N_{j})R_{m,n}R_{i,k}-\frac{1}{2}C_{abmn}R_{a,b}R_{m,n}\biggr{]}dV_{3}\biggr{\}}\delta\Lambda\,\,dx_{4}=0.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, P.A., Lurie, S.A. Mechanistic Model of Gravitation. Lobachevskii J Math 44, 2240–2250 (2023). https://doi.org/10.1134/S1995080223060094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223060094

Keywords:

Navigation