Skip to main content
Log in

A Novel Iterative Scheme To Approximate the Fixed Points of Zamfirescu Operator and Generalized Non-Expansive Map with an Application

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper aims at defining a novel and a faster iterative scheme called PC-iterative scheme to approximate the fixed points of the Zamfirescu operator and Generalized non-expansive mapping. The weak and strong convergence and stability results are established. It is justified numerically that the PC-iterative scheme converges faster than many other known iterative schemes due to Agarwal et al. [9], Gursoy et al. [11], Thakur et al. [5], and F. Ali et al. [14]. Functional differential equations have their application in more realistic mathematical models which depends on the history of the system. Hence functional differential is more significant due to their ease of applicability in real-world problems than Ordinary differential equations. As an application of the PC-iterative scheme, we will obtain the solution of a functional differential equation. To support the validity of our results, examples with graphical representations are provided using Python programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. S. Banach, ‘‘Sur les opèrations dans les ensembles abstraits et leur application aux èquations intègrales,’’ Fund. Math. 3, 133–181 (1922).

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Picard, ‘‘Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives,’’ J. Math. Pures Appl. 6, 145–210 (1890).

    MATH  Google Scholar 

  3. J. S. Bae, ‘‘Fixed point theorems of generalized nonexpansive maps,’’ J. Korean Math. Soc. 21, 233–248 (1984).

    MathSciNet  MATH  Google Scholar 

  4. S. M. Soltuz and D. Otrocol, ‘‘Classical results via Mann–Ishikawa iteration,’’ Rev. Anal. Numer. Theor. Approx. 36, 193–197 (2007).

    MathSciNet  MATH  Google Scholar 

  5. B. S. Thakur, D. Thakur, and M. Postolache, ‘‘A new iterative scheme for numerical reckoning fixed points of Suzuki generalized nonexpansive mappings,’’ Appl. Math. Comput. 275, 47–155 (2016).

    MathSciNet  MATH  Google Scholar 

  6. N. Hussain, K. Ullah, and M. Arshad, ‘‘Fixed point approximation of Suzuki generalized nonexpansive mappings via a new faster iteration process,’’ arXiv: 1802.09888 (2018).

  7. M. A. Krasnosel’skii, ‘‘Two comments on the method of successive approximations,’’ Usp. Math. Nauk 10, 123–127 (1955).

    Google Scholar 

  8. F. E. Browder, ‘‘Nonexpansive nonlinear operators in a Banach space,’’ Proc. Natl. Acad. Sci. U. S. A. 54, 1041–1044 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. P. Agarwal, D. O Regan, and D. Sahu, ‘‘Iterative construction of fixed points of nearly asymptotically nonexpansive mappings,’’ J. Nonlin. Convex Anal. 8 (1), 61 (2007).

    MathSciNet  MATH  Google Scholar 

  10. S. Ishikawa, ‘‘Fixed points by a new iteration method,’’ Proc. Am. Math. Soc. 44, 147–150 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Gürsoy and V. Karakaya, ‘‘A Picard-S hybrid type iteration method for solving a differential equation with retarded argument,’’ arXiv: 1403.2546 (2014).

  12. F. Gürsoy, ‘‘A Picard-S iterative method for approximating fixed point of weak-contraction mappings,’’ Filomat 30, 2829–2845 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Villasana and Radunskaya, ‘‘A delay differential equation model for tumor growth,’’ J. Math. Biol. 47, 270–294 (2003).

    Article  MathSciNet  Google Scholar 

  14. J. Ali and F. Ali, ‘‘A new iterative scheme to approximating fixed points and the solution of a delay differential equation,’’ J. Nonlin. Convex Anal. 21, 2151–2163 (2020).

    MathSciNet  MATH  Google Scholar 

  15. D. Göhde, ‘‘Zum prinzip der kontraktiven abbildung,’’ Math. Nachr. 30, 251–258 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  16. W. A. Kirk, ‘‘A fixed point theorem for mappings which do not increase distances,’’ Am. Math. Mon. 72, 1004–1006 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. E. Hardy and T. D. Rogers, ‘‘A generalization of a fixed point theorem of Reich,’’ Can. Math. Bull. 16, 201–206 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Ullah, J. Ahmad, and M. D. L. Sen, ‘‘On generalized nonexpansive maps in Banach spaces,’’ Computation 8 (3), 61 (2020).

    Article  Google Scholar 

  19. R. Pant and R. Shukla, ‘‘Approximating fixed points of generalized \(\alpha\)-nonexpansive mappings in Banach spaces,’’ Numer. Funct. Anal. Optim. 38, 248–266 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. W. R. Mann, ’’Mean value methods in iteration,’’ Proc. Am. Math. Soc. 4, 506–510 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Vol. 28 of Cambridge Studies in Advanced Mathematics (Cambridge Univ. Press, Cambridge, 1990).

  22. J. Schu, ‘‘Weak and strong convergence to fixed points of asymptotically nonexpansive mappings,’’ Bull. Austral. Math. Soc. 43, 153–159 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  23. Eh. M. Eholtuz and D. Otrocol, ‘‘Classical results via Mann Ishikawa iteration,’’ Rev. Anal. Numer. Theor. Approx. 36, 193–197 (2007).

  24. T. Zamfirescu, ‘‘Fix point theorems in metric spaces,’’ Arch. Math. 23, 292–298 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Reich and A. J. Zaslavski, ‘‘On a class of generalized nonexpansive mappings,’’ Mathematics 8, 1085 (2020).

    Article  Google Scholar 

  26. V. Berinde, ‘‘Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators,’’ Fixed Point Theory Appl. 2004 (2), 1–9 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. M. Ostrowski, ‘‘The round off stability of iterations,’’ Zeitschr. Angew. Math. Mech. 47 (2), 77–81 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. Opial, ‘‘Weak convergence of the sequence of successive approximations for nonexpansive mappings,’’ Bull. Am. Math. Soc. 73, 591–597 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  29. D. R. Sahu, ‘‘Applications of the S-iteration process to constrained minimization problems and split feasibility problems,’’ Fixed Point Theory 12, 187–204 (2011).

    MathSciNet  MATH  Google Scholar 

  30. V. Berinde, ‘‘A convergence theorem for Mann iteration in the class of Zamfirescu operators,’’ Ser. Mat. Inform. XLV 1, 33–41 (2007).

    MathSciNet  MATH  Google Scholar 

  31. B. E. Rhoades and S. M. Soltuz, ‘‘The equivalence between Mann Ishikawa iterations and multistep iterations,’’ Nonlin. Anal.: Theory, Methods Appl. 58, 219–228 (2004).

    MATH  Google Scholar 

  32. P. Gautam, S. Verma, and S. Gulati, ‘‘\(w\)-interpolative C̀iric̀-Reich-Rus type contractions on quasi-partial \(b\)-metric space,’’ Filomat 35, 3533–3540 (2021).

    Article  MathSciNet  Google Scholar 

  33. P. Gautam and C. Kaur, ‘‘Fixed points of interpolative Matkowski type contraction and its application in solving non-linear matrix equations,’’ Rend. Circ. Mat. Palermo, Ser. 2, 1–18 (2022).

  34. S. Hassan, M. de la Sen, P. Agarwal, Q. Ali, and A. Hussain, ‘‘A new faster iterative scheme for numerical fixed points estimation of Suzuki’s generalized nonexpansive mappings,’’ Math. Probl. Eng. (2020).

  35. P. Gautam, L. M. Sànchez Ruiz, S. Verma, and G. Gupta, ‘‘Common fixed point results on generalized weak compatible mapping in quasi-partial b-metric space,’’ J. Math. (2021).

  36. P. Gautam, L. M. Sànchez Ruiz, and S. Verma, ‘‘Fixed point of interpolative C̀iric̀-Reich-Rus contraction mapping on rectangular quasi-partial b-metric space,’’ Symmetry 13, 32 (2020).

    Article  Google Scholar 

  37. Y. Qing and B. E. Rhoades, ‘‘Comments on the rate of convergence between Mann and Ishikawa iterations applied to Zamfirescu operators,’’ Fixed Point Theory Appl. 2008, 387504 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Coman, I. Rus, G. Pavel, and I. A. Rus, Introduction in the Operational Equations Theory (Dacia, Cluj-Napoca, 1976).

    Google Scholar 

  39. P. Gautam, S. Kumar, S. Verma, and G. Gupta, ‘‘Nonunique fixed point results via Kannan-Contraction on quasi-partial-metric space,’’ J. Funct. Spaces, 2163108 (2021).

  40. M. Asaduzzaman and M. Z. Ali, ‘‘On the strong convergence theorem of Noor iterative scheme in the class of Zamfirescu operators,’’ Int. J. Appl. Math. 2, 140–145 (2013).

    Google Scholar 

  41. J. Ali and F. Ali, ‘‘A new iterative scheme to approximating fixed points and the solution of a delay differential equation,’’ J. Nonlin. Convex Anal. 21, 2151–2163 (2020).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pragati Gautam or Chanpreet Kaur.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, P., Kaur, C. A Novel Iterative Scheme To Approximate the Fixed Points of Zamfirescu Operator and Generalized Non-Expansive Map with an Application. Lobachevskii J Math 44, 1316–1331 (2023). https://doi.org/10.1134/S1995080223040108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223040108

Keywords:

Navigation