Skip to main content
Log in

On Discrete Neumann Problem in a Quadrant

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study a discrete analogue on the Neumann boundary value problem for elliptic pseudo-differential equation in a quadrant. This approach is based on a special factorization of an elliptic symbol which permits to construct a general solution for a discrete pseudo-differential equation in discrete analogues of Sobolev–Slobodetskii spaces. The discrete Neumann boundary conditions are considered in the paper. Unique solvability of discrete Neumann boundary value problem is proved and a comparison between discrete and continuous solutions is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. L. Hörmander, Analysis of Partial Differential Operators (Springer, Berlin, 1983), Vols. I–IV.

    MATH  Google Scholar 

  2. G. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations (AMS, Providence, RI, 1981).

    MATH  Google Scholar 

  3. A. Samarskii, The Theory of Difference Schemes (CRC, Boca Raton, FL, 2001).

    Book  MATH  Google Scholar 

  4. V. Ryaben’kii, Method of Difference Potentials and its Applications (Springer, Berlin, 2002).

    Book  MATH  Google Scholar 

  5. F. D. Gakhov, Boundary Value Problems (Dover, Mineola, NY, 1981).

    MATH  Google Scholar 

  6. N. I. Muskhelishvili, Singular Integral Equations (North Holland, Amsterdam, 1976).

    Google Scholar 

  7. I. Gohberg and N. Krupnik, One-Dimensional Linear Singular Integral Equations (Birkhäuser, Basel, 1992).

    Book  MATH  Google Scholar 

  8. I. C. Gohberg and I. A. Feldman, Convolution Equations and Projection Methods for Their Solution (AMS, Providence, RI, 1974).

    Google Scholar 

  9. I. K. Lifanov, Singular Integral Equations and Discrete Vortices (VSP, Utrecht, 1996).

    Book  MATH  Google Scholar 

  10. V. B. Vasil’ev, Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Boundary Value Problems in Non-Smooth Domains (Kluwer Academic, Dordrecht, 2000).

    Book  MATH  Google Scholar 

  11. V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables (Dover, Mineola, NY, 2007).

    Google Scholar 

  12. A. V. Vasil’ev and V. B. Vasil’ev, ‘‘On the solvability of certain discrete equations and related estimates of discrete operators,’’ Dokl. Math. 92, 585–589 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. B. Vasilyev, ‘‘Operators and equations: Discrete and continuous,’’ J. Math. Sci. (N.Y.) 257, 17–26 (2021).

    Article  MATH  Google Scholar 

  14. A. V. Kozak, ‘‘On a projection method for solving operator equations in Banach space,’’ Sov. Math. Dokl. 14, 1159–1162 (1973).

    MATH  Google Scholar 

  15. A. V. Vasilyev and V. B. Vasilyev, ‘‘Pseudo-differential operators and equations in a discrete half-space,’’ Math. Model. Anal. 23, 492–506 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. B. Vasilyev, ‘‘Discrete pseudo-differential operators and boundary value problems in a half-space and a cone,’’ Lobachevskii J. Math. 39, 289–296 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. B. Vasilyev, A. V. Vasilyev, and O. A. Tarasova, ‘‘Discrete boundary value problems as approximate constructions,’’ Lobachevskii J. Math. 43, 1446–1457 (2022).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Mashinets, A. V. Vasilyev or V. B. Vasilyev.

Additional information

(Submitted by A. B. Muravnik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashinets, A.A., Vasilyev, A.V. & Vasilyev, V.B. On Discrete Neumann Problem in a Quadrant. Lobachevskii J Math 44, 1018–1028 (2023). https://doi.org/10.1134/S1995080223030216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223030216

Keywords:

Navigation