Skip to main content
Log in

On Certain Elliptic Problems in Sectorial Domains

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A certain conjugation problem for an elliptic pseudo-differential equation in a plane sector is studied in Sobolev–Slobodetskii spaces. Using wave factorization for an elliptic symbol with concrete index we consider Dirichlet and Neumann conditions on sector sides. It permits to reduce the considered boundary value problem to a system of one-dimensional linear integral equations. For a special case it is possible further to reduce the mentioned system to a system of linear algebraic equations with respect to \(8\) unknown functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Hörmander, Analysis of Partial Differential Operators (Springer, Berlin, 1983), Vols. I–IV.

    MATH  Google Scholar 

  2. M. Taylor, Pseudodifferential Operators (Princeton Univ. Press, Princeton, 1981).

    Book  MATH  Google Scholar 

  3. F. Treves, Introduction to Pseudodifferential Operators and Fourier Integral Operators (Springer, New York, 1980).

    Book  MATH  Google Scholar 

  4. S. Rempel and B.-W. Schulze, Index Theory of Elliptic Boundary Problems (Akademie, Berlin, 1982).

    MATH  Google Scholar 

  5. B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators (Wiley, Chichester, 1998).

    MATH  Google Scholar 

  6. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, Berlin, 1994).

    Book  MATH  Google Scholar 

  7. G. Eskin, Boundar Value Problems for Elliptic Pseudodifferential Equations (AMS, Providence, RI, 1981).

    Google Scholar 

  8. V. S. Vladimirov, Methods of the Theory of Generalized Functions (Taylor and Francis, London, 2002).

    Book  MATH  Google Scholar 

  9. F. D. Gakhov, Boundary Value Problems (Dover, Mineola, NY, 1981).

    MATH  Google Scholar 

  10. N. I. Muskhelishvili, Singular Integral Equations (North-Holland, Amsterdam, 1976).

    Google Scholar 

  11. E. C. Titchmarsch, Introduction to the Theory of Fourier Integrals (Oxford Univ. Press, London, 1948).

    Google Scholar 

  12. M. Borsuk, Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains, Frontiers in Mathematics (Birkhäuser, Basel, 2010).

    Book  MATH  Google Scholar 

  13. G. Eskin, ‘‘Transmission problems for equations of principal type with two variables,’’ Tr. Mosk. Mat. Ob-va 21, 245–292 (1970).

    Google Scholar 

  14. M. Costabel and E. Stephan, ‘‘A direct boundary integral equations method for trasmission problems,’’ J. Math. Anal. Appl. 106, 367–413 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. B. Vasil’ev, Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Boundary Value Problems in Non-Smooth Domains (Kluwer Academic, Dordrecht, 2000).

    Book  MATH  Google Scholar 

  16. V. B. Vasilyev, ‘‘On some transmission problems in a plane corner,’’ Tatra Mt. Math. Publ. 63, 291–301 (2015).

    MathSciNet  MATH  Google Scholar 

  17. V. Vasilyev and N. Eberlein, ‘‘On solvability conditions for a certain conjugation problem,’’ Axioms 10, 234 (2021).

    Article  Google Scholar 

  18. V. B. Vasilyev, ‘‘Pseudo-differential equations, wave factorization, and related problems,’’ Math. Meth. Appl. Sci. 41, 9252–9263 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. B. Vasil’ev, ‘‘Boundary value problems for elliptic pseudodifferential equations in a multidimensional cone,’’ Differ. Equat. 56, 1324–1334 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. B. Vasilyev, ‘‘On certain 3D limit boundary value problem,’’ Lobachevskii J. Math. 41, 913–921 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. B. Vasilyev or N. V. Eberlein.

Additional information

(Submitted by A. M. Elizarov)

Appendices

Appendix

PROPERTIES OF THE MELLIN TRANSFORM

For convenience of a reader we will give here certain facts on the Mellin transform and will show how it can be applied to special integral equations. The Mellin transform is defined by formula

$$\hat{f}(s)=\int\limits_{0}^{\infty}f(x)x^{s-1}dx,\quad s=\sigma+i\tau,$$

at least for functions \(f(x)\in C_{0}^{\infty}(\mathbb{R}_{+}).\) The integral converges for all complex \(s\) and it is an entire analytic function. If we change variable \(x=e^{t}\), then the Mellin transform passes into the Fourier transform of function \(f(e^{t})\):

$$\hat{f}(s)=\int\limits_{-\infty}^{\infty}e^{(\sigma+i\tau)}f(e^{t})dt,\quad s=\sigma+i\tau.$$

Thus, all properties of the Mellin transform can be obtained from corresponding properties of the Fourier transform. Particularly, the inversion formula of the Mellin transform for \(f(x)\in C_{0}^{\infty}(\mathbb{R})\) has the following form

$$f(x)=\frac{1}{2\pi}\int\limits_{-\infty}^{\infty}\hat{f}(s)t^{-s}d\tau,\quad s=\sigma+i\tau.$$

Parceval equality for Mellin transform

$$\int\limits_{0}^{+\infty}t^{2\sigma-1}|f(t)|^{2}dt=\frac{1}{2\pi}\int\limits_{-\infty}^{+\infty}\left|\hat{f}(s)\right|^{2}d\tau,\quad s=\sigma+i\tau,$$

particularly, for \(\sigma=1/2\) we have

$$\int\limits_{0}^{+\infty}|f(t)|^{2}dt=\frac{1}{2\pi}\int\limits_{-\infty}^{+\infty}\left|\hat{f}(s)\right|^{2}d\tau,\quad s=1/2+i\tau,$$

or, in other words,

$$\int\limits_{0}^{+\infty}|f(t)|^{2}dt=\frac{1}{2\pi i}\int\limits_{1/2-i\infty}^{1/2+i\infty}\left|\hat{f}(s)\right|^{2}ds,$$

meaning the right integral as

$$\lim\limits_{y\to\infty}\int\limits_{1/2-iy}^{1/2+iy}\left|\hat{f}(s)\right|^{2}ds.$$

If we have the integral

$$\int\limits_{0}^{+\infty}K(t_{1},t_{2})u(t_{1})dt_{2},$$

in which the kernel \(K(t_{1},t_{2})\) is a homogeneous function of order \(-1\), then after applying the Mellin transform we obtain the following expression

$$\int\limits_{0}^{+\infty}t_{1}^{\lambda-1}\left(\int\limits_{0}^{+\infty}K(t_{1},t_{2})u(t_{1})dt_{2}\right)dt_{1}.$$

The change of variable in the inner integral \(t_{1}=xt_{2}\) leads to the following integral

$$\int\limits_{0}^{+\infty}t_{2}^{\lambda-1}x^{\lambda-1}\left(\int\limits_{0}^{+\infty}t_{2}K(xt_{2},t_{2})u(t_{2})dt_{1}\right)dx,$$

and after rearrangements of integrals we obtain the following product

$$\int\limits_{0}^{+\infty}t_{2}^{\lambda-1}u(t_{2})dt_{2}\int\limits_{0}^{+\infty}x^{\lambda-1}K(x,1)dx=\hat{u}(\lambda)\hat{K}(\lambda),$$

where \(\hat{u}\) denotes the Mellin transform of \(u\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyev, V.B., Eberlein, N.V. On Certain Elliptic Problems in Sectorial Domains. Lobachevskii J Math 43, 2322–2331 (2022). https://doi.org/10.1134/S1995080222110300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222110300

Keywords:

Navigation