Skip to main content
Log in

Resonance Oscillations of Gas in a Closed Tube in the Presence of a Heterogeneous Temperature Field

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A numerical modeling of non-linear oscillations of gas in a closed tube in consideration of a heterogeneous temperature field was done. A dispersion of the resonance frequency of gas under various values of the heat source was found. Radial and axial distributions of oscillation amplitudes of gas velocity in a tube were obtained. It was demonstrated that at a set amplitude of the piston displacement, an increase of the temperature results in a growth of intensity of the gas oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. R. G. Galiullin, I. P. Revva, and A. A. Konyukhov, ‘‘Theory of nonlinear vibrations in a closed pipe with a view to thermoacoustic effects,’’ J. Eng. Phys. 45, 907–911 (1983).

    Article  Google Scholar 

  2. G. P. Lizunkov, V. D. Shimanovich, I. S. Burov, and A. F. Ii’yushchenko, ‘‘Intensified plasma deposition with acoustic and electrical oscillations applied to the heterogeneous jet,’’ J. Eng. Phys. 47, 1342–1345 (1984).

    Article  Google Scholar 

  3. S. A. Fadeev and A. I. Saifutdinov, ‘‘Control for the parameters of a low-pressure glow discharge in argon by means of acoustic flows,’’ Plasma Phys. Rep. 43, 1080–1088 (2017).

    Article  Google Scholar 

  4. G. W. Swift, Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators (Springer, Switzerland, 2017).

    Book  Google Scholar 

  5. N. Rott, ‘‘Thermoacoustics,’’ Adv. Appl. Mech. 20, 135–175 (1980).

    Article  Google Scholar 

  6. G. Mozurkewich, ‘‘Heat transport by acoustic streaming within a cylindrical resonator,’’ Appl. Acoust. 63, 713–735 (2002).

    Article  Google Scholar 

  7. M. K. Aktas, B. Farouk, and Y. Lin, ‘‘Heat transfer enhancement by acoustic streaming in an enclosure,’’ J. Heat Transf. 127, 1313–1321 (2005).

    Article  Google Scholar 

  8. M. F. Hamilton, Y. A. Ilinskii, and E. A. Zabolotskaya, ‘‘Thermal effects on acoustic streaming in standing waves,’’ J. Acoust. Soc. Am. 114, 3092–3101 (2003).

    Article  Google Scholar 

  9. S. L. Demenok, Heat Transfer and Hydraulic Resistance in Pipes and Channels (Strata, St. Petersburg, 2012) [in Russian].

    Google Scholar 

  10. M. W. Thompson, A. A. Atchley, and M. J. Maccarone, ‘‘Influences of a temperature gradient and fluid inertia on acoustic streaming in a standing wave,’’ J. Acoust. Soc. Am. 117, 1839–1849 (2005).

    Article  Google Scholar 

  11. M. Nabavi, K. Siddiqui, and J. Dargahi, ‘‘Effects of transverse temperature gradient on acoustic and streaming velocity fields in a resonant cavity,’’ Appl. Phys. Lett. 93, 051902 (2008).

    Article  Google Scholar 

  12. I. Reyt, S. Moreau, H. Bailliet, and J.-C. Valire, ‘‘Experimental study of acoustic streaming in a high level standing wave guide: Influence of mean temperature and higher harmonics distribution,’’ AIP Conf. Proc. 1474, 83–86 (2012).

    Article  Google Scholar 

  13. M. Cervenka and M. Bednarik, ‘‘Numerical study of the influence of the convective heat transport on acoustic streaming in a standing wave,’’ J. Acoust. Soc. Am. 143, 727–734 (2018).

    Article  Google Scholar 

  14. I. P. Zavershinskiy and E. Ya. Kogan, ‘‘Structures of a gas discharge in the presence of a sound wave,’’ Plasma Phys. 22, 259–266 (1996).

    Google Scholar 

  15. K. Z. Hatsagortsyan and G. A. Galechyan, ‘‘Acoustic discontraction of gas discharge,’’ Laser Phys. 4, 502–506 (1994).

    Google Scholar 

  16. Y. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991).

    Book  Google Scholar 

  17. P. Merkli and H. Thomann, ‘‘Thermoacoustic effects in a resonance tube,’’ J. Fluid Mech. 70, 161–175 (1975).

    Article  Google Scholar 

  18. S. Sakamoto, Y. Ise, and Y. Orino, ‘‘Measurement of heat flow caused by a standing-wave component generated by a thermoacoustic phenomenon,’’ AIP Adv. 9, 115006 (2019).

    Article  Google Scholar 

  19. T. Biwa, K. Sobata, S. Otake, and T. Yazaki, ‘‘Observation of thermoacoustic shock waves in a resonance tube,’’ J. Acoust. Soc. Am. 136, 965–968 (2014).

    Article  Google Scholar 

  20. A. C. Alcock, L. K. Tartibu, and T. C. Jen, ‘‘Experimental investigation of an adjustable standing wave thermoacoustic engine,’’ Heat Mass Transfer 55, 877–890 (2019).

    Article  Google Scholar 

  21. M. A. Mironov, P. A. Pyatakov, and A. S. Tikhonov, ‘‘Thermoacoustic technologies for obtaining cold,’’ Kholodil’n. Tekh. 7, 20–25 (2011).

    Google Scholar 

  22. L. D. Landau and E. M. Lifshits, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, UK, 1987).

    MATH  Google Scholar 

  23. L. Shaidullin and S. Fadeev, ‘‘Acoustic gas oscillations in a cubic resonator with a throat under small perturbations,’’ Appl. Acoust. 192, 108758 (2022).

    Article  Google Scholar 

Download references

Funding

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (‘‘PRIORITY-2030’’).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Gubaidullin, L. A. Tkachenko, S. A. Fadeev or L. R. Shaidullin.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, D.A., Tkachenko, L.A., Fadeev, S.A. et al. Resonance Oscillations of Gas in a Closed Tube in the Presence of a Heterogeneous Temperature Field. Lobachevskii J Math 43, 1110–1115 (2022). https://doi.org/10.1134/S1995080222080145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222080145

Keywords:

Navigation