Skip to main content
Log in

The Exact Solutions of the Equation Describing Antiplane Plastic Flow

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this article a nonlinear differential equation, describing an antiplane plastic flow, is considered. A group of point symmetries for this equation is found. The optimal system of one-dimensional subalgebras is calculated. New solutions are built.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. K. Yuldashev, ‘‘Determination of the coefficient and boundary regime in boundary-value problem for integro-differential equation with degenerate kernel,’’ Lobachevskii J. Math. 38, 547–553 (2017).

    Article  MathSciNet  Google Scholar 

  2. T. K. Yuldashev, ‘‘On inverse boundary value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter,’’ Lobachevskii J. Math. 40, 230–239 (2019).

    Article  MathSciNet  Google Scholar 

  3. T. K. Yuldashev and B. J. Kadirkulov, ‘‘Inverse boundary value problem for a fractional differential equations of mixed type with integral redefinition conditions,’’ Lobachevskii J. Math. 42, 649–662 (2021).

    Article  MathSciNet  Google Scholar 

  4. T. K. Yuldashev, ‘‘Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney-Luke integro-differential equation with degenerate kernel,’’ J. Math. Sci. 254 (6), 793–807 (2021).

    Article  Google Scholar 

  5. L. V. Ovsyannikov, Group Analysis of Differential Equations (Academic, New York, 1982).

    Google Scholar 

  6. A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, 2nd ed. (CRC, Boca Raton, FL, 2012).

    MATH  Google Scholar 

  7. D. D. Ivlev, L. A. Maksimova, R. I. Nepershin, Yu. N. Radaev, S. I. Senashov, and E. I. Shemyakin, The Limit State of Deformable Bodies and Rocks (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  8. S. I. Senashov and O. V. Gomonova, ‘‘Construction of elastoplastic boundary in problem of tension of a plate weakened by holes,’’ Int. J. Non-Lin. Mech. 108, 7–10 (2019).

    Google Scholar 

  9. O. V. Gomonova and S. I. Senashov, ‘‘Determination of elastic and plastic deformation regions in the problem of uniaxial tension of a plate weakened by holes,’’ J. Appl. Mech. Tech. Phys. 62 (1), 157–163 (2021).

    Article  MathSciNet  Google Scholar 

  10. E. I. Kaptsov and S. V. Meleshko, ‘‘Conservation laws of the two-dimensional gas dynamics equations,’’ Int. J. Non-Lin. Mech. 112, 126–132 (2019).

    Google Scholar 

  11. O. V. Kaptsov and D. O. Kaptsov, ‘‘Waves and structures in the Boussinesq equations,’’ J. Appl. Mech. Tech. Phys. 60 (2), 377–381 (2019).

    Article  MathSciNet  Google Scholar 

  12. W. Nakpim and S. V. Meleshko, ‘‘Conservation laws of the one-dimensional equations of relativistic gas dynamics in lagrangian coordinates,’’ Int. J. Non-Lin. Mech. 124 (1), 103496 (2020).

    Google Scholar 

  13. O. O. Vaneeva, R. O. Popovich, and C. Sopocleus, ‘‘Extend group analysis of variable coefficient reaction-diffusion equations with exponential nonlinearities,’’ J. Math. Anal. 396, 225–2420 (2012).

    Article  MathSciNet  Google Scholar 

  14. Yu. N. Grigoriev and M. I. Omelaynchuk, ‘‘Qualitive properties of a certain kinetic problem of binary gas,’’ Sib. Math. J. 46 (5), 813–825 (2005).

    Article  Google Scholar 

  15. Yu. N. Grigoriev, S. V. Meleshko, and A. Suriyawichitseranee, ‘‘A group classification of the spatially homogeneous and isotropic Boltzmann equation with source, II,’’ Int. J. Nonlin. Mech. 61, 15–18 (2014).

    Article  Google Scholar 

  16. E. S. Long, A. Karnbanjong, A. Suriyawichitseranee, Yu. N. Grigoriev, and S. V. Meleshko, ‘‘Application of the a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation,’’ Common. Nonlin. Sci. Numer. Simul. 48, 350–360 (2017).

    Article  MathSciNet  Google Scholar 

  17. S. I. Senashov and I. L. Savostyanova, ‘‘New three-dimensional plastic flows corresponding to a homogeneous stress state,’’ J. Appl. Ind. Math. 13 (3), 536–538 (2019).

    Article  MathSciNet  Google Scholar 

  18. F. Ebobisse and P. Neff, ‘‘A fourth-order gauge-invariant gradient plasticity model for polycrystals based on Kroner’s incompatibility tensor,’’ Math. Mech. Solids 25 (2), 129–159 (2020).

    Article  MathSciNet  Google Scholar 

  19. E. I. Kaptsov and S. V. Meleshko, ‘‘Analysis of the one-dimensional Euler–Lagrange equation of continuum mechanics with a lagrangian of a special form,’’ Appl. Math. Model. 77 (2), 1497–1511 (2020).

    Article  MathSciNet  Google Scholar 

  20. C. Kaewmanee and S. V. Meleshko, ‘‘Group analysis of one-dimensional equations of gas dynamics in Lagrangian coordinates and conservation laws,’’ J. Appl. Mech. Tech. Phys. 61 (2), 189–206 (2020).

    Article  MathSciNet  Google Scholar 

  21. S. V. Meleshko, ‘‘Complete group classification of the two-dimensional shallow water equations with constant coriolis parameter in lagrangian coordinates,’’ Commun. Nonlin. Sci. Numer. Simul. 89, 105293 (2020).

    Article  MathSciNet  Google Scholar 

  22. S. V. Meleshko and N. F. Samatova, ‘‘Group classification of the two-dimensional shallow water equations with the beta-plane approximation of coriolis parameter in lagrangian coordinates,’’ Nonlin. Sci. Numer. Simul. 90, 105337 (2020).

    Article  MathSciNet  Google Scholar 

  23. A. V. Bobylev and S. V. Meleshko, ‘‘Group analysis of the generalized burnett equations,’’ Nonlin. Math. Phys. 27 (3), 494–508 (2020).

    Article  MathSciNet  Google Scholar 

  24. P. Siriwat, Yu. N. Grigoriev, and S. V. Meleshko, ‘‘Invariant solutions of one-dimensional equations of two-temperature relaxation gas dynamics,’’ Math. Methods Appl. Sci. 43 (5), 2444–2457 (2020).

    Article  MathSciNet  Google Scholar 

  25. S. V. Meleshko, N. P. Moshkin, and V. V. Pukhnachev, ‘‘On steady two-dimensional analytical solutions of the viscoelastic Maxwell equations,’’ J. Non-Newton. Fluid Mech. 270, 1–7 (2019).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. I. Senashov or I. L. Savostyanova.

Additional information

(Submitted by T. K. Yuldashev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senashov, S.I., Savostyanova, I.L. The Exact Solutions of the Equation Describing Antiplane Plastic Flow. Lobachevskii J Math 42, 3741–3746 (2021). https://doi.org/10.1134/S1995080222030192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222030192

Keywords:

Navigation