Skip to main content
Log in

Entropic inequalities for matrix elements of rotation group irreducible representations

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Using the entropic inequalities for Shannon and Tsallis entropies new inequalities for some classical polynomials are obtained. To this end, an invertible mapping for the irreducible unitary representation of groups SU(2) and SU(1, 1) like Jacoby polynomials and Gauss’ hypergeometric functions, respectively, are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ya. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions: Recent Advances, Ser. Mathematics and Its Applications (Springer, Berlin, 1994).

    MATH  Google Scholar 

  2. N. A. Gromov and V. I. Manko, “The Jordan–Schwinger representations of Cayley–Klein groups. I. II. III. The orthogonal groups,” J. Math. Phys. 31, 1054 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Malkin, V. I. Man’ko, and D. A. Trifonov, “Linear adiabatic invariants and coherent states,” J. Math. Phys. 14, 576–582 (1973).

    Article  Google Scholar 

  4. R. B. Nelsen, An Introduction to Copulas (Springer, Berlin, 2006).

    MATH  Google Scholar 

  5. E. H. Lieb and M. B. Ruskai, “Proof of the strong subadditivity of quantum mechanical entropy,” J. Math. Phys. 14, 1938–1941 (1973).

    Article  MathSciNet  Google Scholar 

  6. V. N. Chernega and V. I. Man’ko, “Entropy and information characteristics of qubit states,” J. Russ. Laser Res. 29, 505 (2008).

    Article  Google Scholar 

  7. M. A. Man’ko, V. I. Man’ko, and R. V. Mendes, “Non-commutative time-frequency tomography,” J. Russ. Laser Res. 27, 507 (2006).

    Article  Google Scholar 

  8. V. I. Man’ko and L. A. Markovich, “New inequalities for quantum von Neumann and tomographic mutual information,” J. Russ. Laser Res. 35, 355–361 (2014).

    Article  Google Scholar 

  9. V. I. Man’ko and L. A. Markovich, “Entropic inequalities and properties of some special functions,” J. Russ. Laser Res. 35, 200–210 (2014).

    Article  MATH  Google Scholar 

  10. N. M. Atakishiyev, “Fourier–Gauss transforms of Some q-special functions,” in CRM Proceedings and Lecture Notes (Am. Math. Soc., Providence, RI, 2000), Vol. 25, pp. 13–21.

    Google Scholar 

  11. N. M. Atakishiyev, J. P. Rueda, and K. B. Wol, “On q-extended eigenvectors of the integral and finite Fourier transforms,” J. Phys. A:Math. Theor. 40, 1–7 (2007).

    Article  MathSciNet  Google Scholar 

  12. G. E. Andrews, R. Askey, and R. Roy, Special Functions (Cambridge Univ. Press, Cambridge, 1999).

    Book  MATH  Google Scholar 

  13. G. Gasper and M. Rahman, Basic Hypergeometric Series (Cambridge Univ. Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  14. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Orthogonal Polynomials in Discrete Variables (Springer, Berlin, 1991).

    Book  MATH  Google Scholar 

  15. A. F. Nikiforov and V. B. Uvarov, “Classical orthogonal polynomials in a discrete variable on non-uniform lattices,” Preprint KIAM (Keldysh Inst. Appl. Math., Moscow, 1983).

    MATH  Google Scholar 

  16. Yu. F. Smirnov, S. K. Suslov, and A. M. Shirokov, “Clebsch–Gordan coefficients and Racah coefficients for the SU(2) and SU(1, 1) groups as the discrete analogues of the Poschl–Teller potential wavefunctions,” J. Phys. A 17 (11), 2157 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. M. Khoroshkin, I. I. Pop, M. E. Samsonov, A. A. Stolin, and V. N. Tolstoy, “On some Lie bialgebra structures on polynomial algebras and their quantization,” Comm. Math. Phys. 282, 625–662 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. M. Asherova, V. A. Knyr, Y. F. Smirnov, and V. N. Tolstoi, “Some group-theory aspects of the method of generalized hyperspherical functions,” Sov. J. Nucl. Phys. 21, 580–584 (1975).

    Google Scholar 

  19. V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, “Generalized qubit portrait of the qutrit-state density matrix,” J. Russ. Laser Res. 34, 383–387 (2013).

    Article  Google Scholar 

  20. M. A. Man’ko and V. I. Man’ko, “The quantum strong subadditivity condition for systems without subsystems,” Phys. Scripta T160, (2014).

    Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977).

    Google Scholar 

  22. G. Lindblad, “Eigenfunction expansions associated with unitary irreducible representations of SU(1, 1),” Phys. Scripta 1, 201 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Andrews and J. Gunson, “Complex angular momenta and many-particle states I. Properties of local representations of the rotation group,” J. Math. Phys. 5, 1391 (1964).

    Article  MathSciNet  Google Scholar 

  24. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Rényi, Probability Theory (North-Holland, Amsterdam, 1970).

    MATH  Google Scholar 

  26. C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” J. Stat. Phys. 52, 479 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  27. K. M. R. Audenaert, “Subadditivity of q-entropies for q > 1,” J. Math. Phys. 48, 083507 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Petz and D. L. Virosztek, “Some inequalities for quantum Tsallis entropy related to the strong subadditivity,” arXiv:1403.7062 (2014).

    MATH  Google Scholar 

  29. F. Conrady and J. Hnybida, “Unitary irreducible representations of SL(2, C) in discrete and continuous SU(1, 1) bases,” J. Math. Phys. 52, 012501 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Bargmann, “Irreducible unitary representations of the Lorentz group,” Ann. Math. 48, 568 (1947).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Man’ko.

Additional information

Submitted by A. I. Aptekarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man’ko, V.I., Markovich, L.A. Entropic inequalities for matrix elements of rotation group irreducible representations. Lobachevskii J Math 38, 699–708 (2017). https://doi.org/10.1134/S199508021704014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508021704014X

Keywords and phrases

Navigation