Skip to main content
Log in

Quantum alternation

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce quantum alternation as a generalization of quantum nondeterminism. We define q-alternating Turing machine (qATM) by augmenting alternating Turing machine with constant-size quantum memory. We show that one-way constant-space qATMs (1AQFAs) are Turing equivalent. Then, we introduce strong version of qATM by requiring to halt in every computation path and we show that strong qATMs can simulate deterministic spacewith exponentially less space. This leads to shifting the deterministic space hierarchy exactly by one level. We also focus on realtime versions of 1AQFAs (rtAQFAs) and obtain many results: rtAQFAs can recognize a PSPACE-complete problem; they cannot be simulated by sublinear deterministic Turing machines; for any level of polynomial hierarchy, say k, there exists a complete language that can be recognized by rtAFAs with only (k +1) alternations; and polynomial hierarchy lies in its log-space q-alternation counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Aaronson, “Quantum computing, postselection, and probabilistic polynomial-time,” Proceedings of the Royal Society A 461 (2063), 3473–3482 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ambainis and A. Yakaryilmaz, Automata and Quantum Computing. https://arxiv.org/pdf/1507.01988v1.pdf.

  3. S. Arora and B. Barak, Computational Complexity: A Modern Approach (Cambridge University Press, 2009).

    Book  MATH  Google Scholar 

  4. L. Babai, “Trading group theory for randomness,” in Proceedings of the 17th Annual ACMSymposium on Theory of Computing (ACM, New York, 1985), pp. 421–429.

    Google Scholar 

  5. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, “Alternation,” Journal of the ACM 28 (1), 114–133 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. K. Chandra and L. J. Stockmeyer, “Alternation,” in Proceedings of the 17th IEEE Symposium on Foundations of Computer Science (ACM, New York, 1976), pp. 98–108.

    Google Scholar 

  7. A. Condon. Computational Models of Games (MIT Press, 1989).

    Google Scholar 

  8. H.G. Demirci, M. Hirvensalo, K. Reinhardt, A. C. C. Say, and A. Yakaryilmaz, in books@ocg.at, Vol. 304: Proceedings of 6th Workshop on Non-Classical Models of Automata and Applications (NCMA) (Österreichische Computer Gesellschaft,Wien, 2014), pp. 101–114. https://arxiv.org/pdf/1407.0334v1.pdf.

    Google Scholar 

  9. J. Fearnley, Private communications, 2013 and 2014.

    Google Scholar 

  10. J. Fearnley and M. Jurdzinski, “Reachability in two-clock timed automata is PSPACE-complete,” Automata, Languages, and Programming (Springer, Berlin, 2013), pp. 212–223.

    Google Scholar 

  11. S. Fenner, F. Green, S. Homer, and R. Puim, in Sixth Italian Conference on Theoretical Computer Science (World-Scientific, Singapore, 1998), pp. 241–252.

    Google Scholar 

  12. S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive proof systems,” SIAM Journal on Computing 18 (1), 186–208 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. C. Kozen, in FOCS’76: Proceedings of the 17th IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1976), pp. 89–97.

    Google Scholar 

  14. M. Nasu and N. Honda, “A context-free language which is not acceptable by a probabilistic automaton,” Information and Control 18 (3), 233–236 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

    MATH  Google Scholar 

  16. C. H. Papadimitriou, “Games against nature,” Journal of Computer and System Sciences 31 (2), 288–301 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Paz, Introduction to Probabilistic Automata (Academic Press, New York, 1971).

    MATH  Google Scholar 

  18. J.H. Reif, “The complexity of two-player games of incomplete information,” Journal of Computer and System Sciences 29 (2), 274–301 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  19. W. J. Savitch, “Relationships between nondeterministic and deterministic tape complexities,” Journal of Computer and System Sciences 4 (2), 177–192 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. C. C. Say and A. Yakaryilmaz, in Computing with New Resources: Essays Dedicated to Jozef Gruska on the Occasion of His 80th Birthday, Ed. by C. S. Calude, R. Freivalds, and I. Kazuo (Springer,New York, 2014), pp. 208–222.

  21. D. van Melkebeek and T. Watson, “Time-space efficient simulations of quantum computations,” Theory of Computing 8 (1), 1–51 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Watrous, Space-bounded quantum computation, PhD Thesis (University of Wisconsin, Madison, 1998).

    MATH  Google Scholar 

  23. J. Watrous, “Space-bounded quantum complexity,” Journal of Computer and System Sciences 59 (2), 281–326 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Watrous, “On the complexity of simulating space-bounded quantum computations,” Computational Complexity 12 (1-2), 48–84 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Yakaryilmaz, Turing-Equivalent Automata Using a Fixed-Size Quantum Memory. https://arxiv.org/pdf/1205.5395v1.pdf.

  26. A. Yakaryilmaz, in Computer Science—Theory and Applications, Ed. by A. A. Bulatov and A. M. Shur (Springer, New York, 2013), pp. 366–377.

  27. A. Yakaryilmaz, in The Proceedings of Workshop on Quantum and Classical Complexity (Univeristy of Latvia Press, Riga, 2013), pp. 45–60; Electronic Colloquium on Computational Complexity, TR12-130 (2012).

    Google Scholar 

  28. A. Yakaryilmaz, in Computer Science—Theory and Applications, Ed. by A. A. Bulatov and A. M. Shur (Springer, New York, 2013), pp. 334–346.

  29. A. Yakaryilmaz and A. C. C. Say, “Languages recognized by nondeterministic quantum finite automata,” Quantum Information and Computation 10 (9&10), 747–770 (2010).

    MathSciNet  MATH  Google Scholar 

  30. A. Yakaryilmaz and A. C. C. Say, “Unbounded-error quantum computation with small space bounds,” Information and Computation 279 (6), 873–892 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Yakaryilmaz and A. C. C. Say, “Proving the power of postselection,” Fundamenta Informaticae 123 (1), 107–134 (2013).

    MathSciNet  MATH  Google Scholar 

  32. A. Yakaryilmaz, A. C. C. Say, and H. G. Demirci, “Debates with small transparent quantum verifiers,” International Journal of Foundations of Computer Science 27 (2), 283–300 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Yamakami and A. C.-C. Yao, “NQP = co-C=P,” Information Processing Letters 71 (2), 63–69 (1999).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yakaryılmaz.

Additional information

Submitted by F. M. Ablayev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakaryılmaz, A. Quantum alternation. Lobachevskii J Math 37, 637–649 (2016). https://doi.org/10.1134/S1995080216060196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080216060196

Keywords and phrases

Navigation