Skip to main content
Log in

Calorimetry System Based on Polystyrene/MWCNT Nanocomposite for Electron Beam Dosimetry: A New Approach

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A novel calorimetry system is presented to use in radiation processing facilities equipped with an electron accelerator. The calorimeter core was fabricated with polystyrene/multiwall carbon nanotube nanocomposite. The nanocomposite samples were made in different weight percentages of MWCNTs namely 0.05, 0.1, 0.28, 1, and 2 wt %. The SEM analysis was applied to demonstrate the dispersion state of the inclusions into the polymer matrix. The electrical percolation threshold was investigated and achieved at about 0.1 wt % of the inclusion. The electrical resistance of the samples was objected as the calorimeter response before and after the electron beam irradiation. A linear response of the resistance-dose curve was observed for all the nanocomposites having the 0.1 and 0.28 wt % of the inclusion at a dose range of ~8 to ~40 kGy. The results showed that the decrease of the MWCNT content leads to increasing the electrical resistance. Furthermore, the thicker sample showed better experimental results in comparison to the thinners. The best results were obtained for the nanocomposite sample containing 0.14 wt % of MWCNT and 5 mm of sample thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Miller and A. Kovacs, Nucl. Instrum. Methods Phys. Res., Sect. B 10, 994 (1985).

    Google Scholar 

  2. J. Humphreys and W. McLaughlin, Int. J. Radiat. A-ppl. Instrum. C 35, 744 (1990).

    CAS  Google Scholar 

  3. W. L. McLaughlin, A. Boyd, K. Chadwick, et al., Dosimetry for Radiation Processing (Taylor and Francis, London, 1989).

    Google Scholar 

  4. F. Liu, X. Zhang, W. Li, et al., Composites, Part A 40, 1717 (2009).

    Article  Google Scholar 

  5. M. Borhani, F. Ziaie, M. Bolorizadeh, and G. Mirjalili, Nukleonika 51, 179 (2006).

    CAS  Google Scholar 

  6. V. Mittal, Optimization of Polymer Nanocomposite Properties (Wiley, Germany, 2009).

    Google Scholar 

  7. F. Ziaie, Nukleonika 49, 159 (2004).

    CAS  Google Scholar 

  8. F. Ziaie and A. Noori, Nukleonika 51, 175 (2006).

    CAS  Google Scholar 

  9. P. Owen, Modelling a Calorimeter for High Dose Rate Brachytherapy (Dep. Phys., Univ. of Surrey, 2011), p. 76.

  10. S. Malekie, F. Ziaie, and A. Esmaeli, Nucl. Instrum. Methods Phys. Res., Sect. A 816, 101 (2016).

    CAS  Google Scholar 

  11. F. Puch and C. Hopmann, Polymer 55, 3015 (2014).

    Article  CAS  Google Scholar 

  12. D. Vennerberg and R. Hall, M. R. Polymer 55, 4156 (2014).

  13. S. Gong, Z. H. Zhu, and S. A. Meguid, Polymer 56, 498 (2015).

    Article  CAS  Google Scholar 

  14. S. Malekie and F. Ziaie, Nucl. Instrum. Methods Phys. Res., Sect. A 791, 1 (2015).

    CAS  Google Scholar 

  15. S. Malekie, F. Ziaie, S. Feizi, and A. Esmaeli, Nucl. Instrum. Methods Phys. Res., Sect. A 833, 127–133 (2016).

    CAS  Google Scholar 

  16. S. Malekie, F. Ziaie, and M. A. Naeini, Kerntechnik 81, 647 (2016).

    Article  Google Scholar 

  17. S. Malekie and F. Ziaie, J. Polym. Eng. 37, 205 (2017).

    Article  CAS  Google Scholar 

  18. A. Mosayebi, S. Malekie, and F. Ziaie, J. Instrum. 12, P05012 (2017).

    Article  Google Scholar 

  19. A. Mosayebi, S. Malekie, A. Rahimi, and F. Ziaie, Radiat. Phys. Chem., 108362 (2019).

  20. Z. Han and A. Fina, Prog. Polym. Sci. 36, 914 (2011).

    Article  CAS  Google Scholar 

  21. D. S. McLachlan and G. Sauti, “The AC and DC conductivity of nanocomposites,” J. Nanomater., 030389 (2007).

  22. S. Zdenko and T. Dimitrios, Prog. Polym. Sci 35, 357 (2010).

    Article  Google Scholar 

  23. A. Belashi, Percolation modeling in polymer nanocomposites, Dissertation (2011).

  24. Alamusi, N. Hu, H. Fukunaga, et al., Sensors 11, 10691 (2011).

    Article  CAS  Google Scholar 

  25. J.-M. Yuan, Z.-F. Fan, X.-H. Chen, et al., Polymer 50, 3285 (2009).

    Article  CAS  Google Scholar 

  26. F. Ziaie, A. Noori, F. Anvari, et al., Rad. Meas. 40, 758 (2005).

    Article  CAS  Google Scholar 

  27. F. Ziaie, H. Afarideh, S. Hadji-Saeid, and S. Durrani, Rad. Meas. 34, 609 (2001).

    Article  CAS  Google Scholar 

  28. Y. Wang, J. Lue, and K. Pauw, J. Nanosci. Nanotechnol. 9, 1734 (2009).

    Article  CAS  Google Scholar 

  29. J. O. Aguilar, J. R. Bautista-Quijano, and F. Aviles, E-xpress Polym. Lett. 4, 292 (2010).

    Article  CAS  Google Scholar 

  30. N. Apsley and H. P. Hughes, Philos. Mag. 3, 963 (1974).

    Article  Google Scholar 

  31. M. S. Saavedra, Novel organic based nano-composite detector films: The making and testing of CNT doped poly(acrylate) thin films on ceramic chip substrates, BSc Dissertation (Dep. Phys., Univ. Surrey, Guildford, Surrey, 2005), p. 37.

  32. B. Safadi, R. Andrews, and E. Grulke, J. Appl. Polym. Sci. 84, 2660 (2002).

    Article  CAS  Google Scholar 

  33. A. K. Kota, B. H. Cipriano, M. K. Duesterberg, et al., Macromolecules 40, 7400 (2007).

    Article  CAS  Google Scholar 

  34. G. Sun, G. Chen, Z. Liu, and M. Chen, Carbon 48, 1434 (2010).

    Article  CAS  Google Scholar 

  35. S. Mazinani, A. Ajji, and C. Dubois, Polymer 50, 3329 (2009).

    Article  CAS  Google Scholar 

  36. S. Kara, E. Arda, F. Dolastir, and Ö. Pekcan, J. Colloid Interface Sci. 344, 395 (2010).

    Article  CAS  Google Scholar 

  37. A. Shah and T. Rizvi, Measurement 46, 1541 (2013).

    Article  Google Scholar 

  38. R. Bhatia, J. Galibert, and R. Menon, Carbon 69, 372 (2014).

    Article  CAS  Google Scholar 

  39. J. Yu, K. Lu, E. Sourty, et al., Carbon 45, 2897 (2007).

    Article  CAS  Google Scholar 

  40. X. Wang and S. C. Jana, Polymer 54, 750 (2013).

    Article  CAS  Google Scholar 

  41. V. K. Sachdev, S. Bhattacharya, K. Patel, et al., J. Appl. Polym. Sci., 131 (2014).

  42. V. Kažukauskas, V. Kalendra, C. Bumby, et al., Phys. Status Solidi C 5, 3172 (2008).

    Article  Google Scholar 

  43. M. Arjmand, T. Apperley, M. Okoniewski, and U. Sundararaj, Carbon 50, 5126 (2012).

    Article  CAS  Google Scholar 

  44. N. K. Shrivastava and B. Khatua, Carbon 49, 4571 (2011).

    Article  CAS  Google Scholar 

  45. B. Zhang, R. W. Fu, M. Q. Zhang, et al., Sens. Actuators, B 109, 323 (2005).

    Article  CAS  Google Scholar 

  46. S. T. Kim, H. J. Choi, and S. M. Hong, Colloid Polym. Sci. 285, 593 (2007).

    Article  CAS  Google Scholar 

  47. C. Poa, S. Silva, P. Watts, et al., Appl. Phys. Lett. 80, 3189 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhood Ziaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, A., Ziaie, F., Sheikh, N. et al. Calorimetry System Based on Polystyrene/MWCNT Nanocomposite for Electron Beam Dosimetry: A New Approach. Nanotechnol Russia 15, 175–181 (2020). https://doi.org/10.1134/S1995078020020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020020020

Navigation