Skip to main content
Log in

Measurement of Low Concentrations of Nanoparticles in Aerosols Using Optical Dielectric Microcavity: The Case of TiO2 Nanoparticles

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A method for measuring low concentrations (up to 0.001 mg/mL) of TiO2 nanoparticles in aerosols using an optical dielectric microcavity is proposed. The method is based on measuring the change in the microcavity Q factor due to the adsorption of particles on its surface. The results of experimental studies of aerosol samples containing TiO2 nanoparticles with a diameter of 40 nm with different concentrations are presented. The method for calibrating the measurement channel is developed. The basic requirements for the optical dielectric microcavity as a primary measuring transducer are formulated. The influence of the opticalmode volume on the measurement error is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby, “Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism,” Appl. Environ. Microbiol. 65, 4094–4098 (1999).

    Google Scholar 

  2. J. H. Braun, A. Baidins, and R. E. Marganski, “TiO2 pigment technology: A review,” Prog. Org. Coat. 20, 105–138 (1992).

    Article  Google Scholar 

  3. J. Jin, S. G. Kwon, T. Yu, M. Cho, J. Lee, J. Yoon, and T. Hyeon, “Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli,” J. Phys. Chem. 109, 15297–15302 (2005).

    Article  Google Scholar 

  4. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev. 107, 2891–2959 (2007).

    Article  Google Scholar 

  5. L. C. Renwick, D. Brown, A. Clouter, and K. Donaldson, “Increased inflammationand altered macrophage chemotactic responses caused by two ultrafine particle types,” Occup. Environ. Med. 61, 442–447 (2004).

    Article  Google Scholar 

  6. A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens,” J. Phys. D: Appl. Phys. 38, 2564–2570 (2005).

    Article  Google Scholar 

  7. J. R. Gurr, A. S. Wang, C. H. Chen, and K. Y. Jan, “Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells,” Toxicology 213, 66–73 (2005).

    Article  Google Scholar 

  8. N. Serpone, D. Dondi, and A. Albini, “Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products,” Inorg. Chim. Acta 360, 794–802 (2007).

    Article  Google Scholar 

  9. GOST (State Standard) No. R 55723-2013: “Nanotechnologies. Guide to determining the characteristics of industrial nanoobjects” (2014).

  10. MR (Guidelines) no. 1.2.2522-09: “Identification of nanomaterials posing a potential hazard to human health” (2009).

  11. MR (Guidelines) No. 1.2.0043-11: “Control of nanomaterials in environmental objects” (2011).

  12. K. D. Heylman, K. A. Knapper, and R. H. Goldsmith, “Photothermal microscopy of nonluminescent single particles enabled by optical microresonators,” J. Phys. Chem. Lett. 5, 1917–1923 (2014).

    Article  Google Scholar 

  13. P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).

    Article  Google Scholar 

  14. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London, U.K.) 446, 1066–1069 (2007).

    Article  Google Scholar 

  15. G. C. Righini and S. Soria, “Biosensing by WGM microspherical resonators,” Sensor. 905, 905 (2016).

    Article  Google Scholar 

  16. F. Vollmer and L. Yang, “Label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics, No. 1, 267–291 (2012).

    Article  Google Scholar 

  17. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U. S. A. 105, 20701–20704 (2008).

    Article  Google Scholar 

  18. F. Vollmer, I. Teraoka, and S. Arnold, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. 20, 1937–1946 (2003).

    Article  Google Scholar 

  19. S. K. Ozdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83 (3), 5 (2011).

    Article  Google Scholar 

  20. Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev.. 90, 10 (2014).

    Google Scholar 

  21. W. Kim, S. K. Özdemir, J. Zhu, L. Hee, and L. Yang, “Demonstration of mode splitting in an optical microcavity in aqueous environment,” Appl. Phys. Lett. 97, 071111 (2010).

    Article  Google Scholar 

  22. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 168–240 (2015).

    Article  Google Scholar 

  23. A. A. Samoilenko, G. G. Levin, V. L. Lyaskovskii, K.N. Min’kov, A. D. Ivanov, and I. A. Bilenko, “Application of whispering-gallery-mode optical microcavities for detection of silver nanoparticles in an aqueous medium,” Opt. Spectrosc. 122, 1002 (2017).

    Article  Google Scholar 

  24. A. D. Ivanov, K. N. Min’kov, and A. A. Samoilenko, “Method of producing tapered optical fiber,” J. Opt. Technol. 84, 500–503 (2017).

    Article  Google Scholar 

  25. Yu. A. Kotov, “The electrical explosion of wire: a method for the synthesis of weakly aggregated nanopowders,” Nanotechnol. Russ. 4, 415–424 (2009).

    Article  Google Scholar 

  26. Yu. M. Zolotarevskii, K. N. Min’kov, A. D. Ivanov, and A. A. Samoilenko, “Experimental researches of titanium dioxide nanoparticles detection possibility in air medium by means of optical resonators,” in Proceedings of the Conference on Applied Optics, St. Petersburg, 2016, p. 3.

    Google Scholar 

  27. M. F. Muers, “Overview of nebulizer treatment,” Thorax 52, 25–30 (1997).

    Article  Google Scholar 

  28. A. A. Lizunova, E. G. Kalinina, I. V. Beketov, and V. V. Ivanov, “Development of reference materials for the diameter of nanoparticles of colloidal solutions of aluminum oxide and titanium dioxide,” Meas. Tech. 57, 848–854 (2014).

    Article  Google Scholar 

  29. GOST (State Standard) No. R 8.791-2013: “Radioisotope and piezo-balanced measuring instruments of mass concentration of dust in the air working area. Verification procedure” (2013).

  30. X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by selfreferenced differential-mode detection scheme,” Appl. Phys. Lett. 104, 033703 (2014).

    Article  Google Scholar 

  31. GOST (State Standard) No. R 8.775-2011: “Disperse composition of gaseous media. Determination of nanoparticle sizes by the method of differential electric mobility of aerosol particles” (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Min’kov.

Additional information

Original Russian Text © K.N. Min’kov, A.D. Ivanov, A.A. Samoilenko, D.D. Ruzhitskaya, G.G. Levin, A.A. Efimov, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min’kov, K.N., Ivanov, A.D., Samoilenko, A.A. et al. Measurement of Low Concentrations of Nanoparticles in Aerosols Using Optical Dielectric Microcavity: The Case of TiO2 Nanoparticles. Nanotechnol Russia 13, 38–44 (2018). https://doi.org/10.1134/S1995078018010093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018010093

Navigation