Skip to main content
Log in

Sparking plasma sintering of tungsten carbide nanopowders

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Spark Plasma Sintering studies of the high-speed consolidation of pure tungsten carbide WC nanopowders have been carried out. The influence of the initial size of the WC nanoparticles and modes of their receiption the density, structural parameters, and mechanical properties of tungsten carbide are studied. Samples of high-density nanostructured tungsten carbide with high hardness (up to 31–34 GPa) and an increased crack resistance (4.3–5.2 MPa m1/2) are obtained. It is found that the effect of accelerating tungsten carbide nanopowder sintering under conditions of high-speed heating is associated with the acceleration of diffusion along grain boundaries in the sintered material. It is shown that the nonmonotonic dependence of the optimal sintering temperature on the initial grain size is caused by a change in grain-boundary diffusion coefficient in conditions of abnormal grain growth. It is found that the size of abnormally large grains in spark plasma sintering depends on the volume fraction of particles of the nonstoichiometric phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. S. Panov, A. M. Chuvilin, and V. A. Fal’kovskii, Technology and Properties of Sintered Hard Alloys and Units on their Base (National Univ. of Science and Technology MISiS, Moscow, 2004) [in Russian].

    Google Scholar 

  2. R. A. Andrievskii and I. I. Spivak, Strength of Refractory Compounds and Related Materials (Metallurgiya, Chelyabinsk, 1989), [in Russian].

    Google Scholar 

  3. I.-J. Shon, B.-R. Kim, J.-M. Doh, J.-K. Yoon, and K.-D. Woo, “Properties and rapid consolidation of ultra-hard tungsten carbide,” J. Alloys Compounds 489(1), L4–L8 (2009).

    Article  Google Scholar 

  4. J. Zhang, G. Zhang, Sh. Zhao, and X. Song, “Binderfree WC bulk synthesized by spark plasma sintering,” J. Alloys Compounds 479(1–2), 427–431 (2009).

    Article  Google Scholar 

  5. K.-M. Tsai, “The effect of consolidation parameters on the mechanical properties of binderless tungsten carbide,” Int. J. Refractory Met. Hard Mater. 29, 188–201 (2011).

    Article  Google Scholar 

  6. J. Zhao, T. Holland, C. Unuvar, and Z. A. Munir, “Sparking plasma sintering of nanometric tungsten carbide,” Int. J. Refractory Met. Hard Mater. 27, 130–139 (2009).

    Article  Google Scholar 

  7. D. Sivaprahasam, S. B. Chandrasecar, and R. Sundaresan, “Microstructure and mechanical properties of nanocrystalline WC-12Co consolidated by spark plasma sintering,” Int. J. Refractory Met. Hard Mater. 25, 144–152 (2007).

    Article  Google Scholar 

  8. M. Sommer, W. D. Schubert, E. Zobetz, and P. Warbichler, “On the formation of very large WC crystals during sintering of ultrafine WC-Co alloys,” Int. J. Refractory Met. Hard Mater. 20, 41–50 (2002).

    Article  Google Scholar 

  9. S. I. Cha and S. H. Hong, “Microstructures of binderless tungsten carbides sintered by spark plasma sintering processes,” Mater. Sci. Eng. A 356(1–2), 381–389 (2003).

    Article  Google Scholar 

  10. K. Mannesson, I. Borgh, A. Borgenstam, and J. Agren, “Abnormal grain growth in cemented carbides—expermax iments and simulations,,” Int. J. Refractory Met. Hard Mater. 29, 488–494 (2011).

    Article  Google Scholar 

  11. M. Tokita, Spark Plasma Sintering (SPS) method, systems, and applications,” in Handbook of Advanced Ceramics, 2nd Ed. (Acad. Press, 2013), Chapter 11.2.3, pp. 1149–1177.

    Chapter  Google Scholar 

  12. M. Tokita, “Recent and Future Progress on Advanced Ceramics Sintering by Spark Plasma Sintering,” Nanotechnol. Russ. 10(3–4), 261 (2015).

    Article  Google Scholar 

  13. Z. A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, “The effect of electric field and pressure on the synthesis and consolidation materials: a review of the spark plasma sintering method,” J. Mater. Sci. 41(3), 763–777 (2006).

    Article  Google Scholar 

  14. M. Tokita, “Development of advanced Spark Plasma Sintering (SPS) systems and its industrial applications,” Ceram. Trans. 194, 51–59 (2006).

    Google Scholar 

  15. V. N. Chuvil’deev, A. V. Moskvicheva, A. V. Nokhrin, G. V. Baranov, Yu. V. Blagoveshchenskii, D. N. Kotkov, Yu. G. Lopatin, and V. Yu. Belov, “Ultrastrong nanodispersed tungsten pseudoalloys produced by High-Energy Milling and Spark Plasma Sintering,” Dokl. Phys. 56(2), 109–113 (2011).

    Article  Google Scholar 

  16. V. N. Chuvil’deev, A. V. Nokhrin, G. V. Baranov, A. V. Moskvicheva, M. S. Boldin, D. N. Kotkov, N. V. Sakharov, Yu. V. Blagoveshchenskii, S. V. Shotin, N. V. Melekhin, and V. Yu. Belov, “Study of the structure and mechanical properties of nano- and ultradispersed mechanically activated heavy tungsten alloys,” Nanotech. Russ. 8(1–2), 108 (2013).

    Article  Google Scholar 

  17. A. I. Orlova, V. Yu. Volgutov, D. A. Mikhailov, D. M. Bykov, V. A. Skuratov, V. N. Chuvil’deev, A. V. Nokhrin, M. S. Boldin, and N. V. Sakharov, “Phosphate Ca1/4Sr1/4Zr2(PO4)3 of the NaZr2(PO4)3 structure type: synthesis of a dense ceramic material and its radiation testing,” J. Nucl. Mater. 446(1–3), 232–239 (2014).

    Article  Google Scholar 

  18. Yu. V. Tsvetkov and S. A. Panfilov, Low Temperature Plasma in Restoration Processes (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  19. Yu. V. Blagoveshchenskii, N. V. Alekseev, A. V. Samokhin, Yu. I. Mel’nik, Yu. V. Tsvetkov, and S. A. Kornev, RF Patent 2349424 (2007).

  20. N. V. Isaeva, Yu. V. Blagoveshenskii, N. V. Blagoveshenskaya, Yu. I. Mel’nik, A. S. Samokhin, N. V. Alekseev, and A. G. Astashov, “Preparation of nanopowders of carbides and hard-alloy mixtures applying low-temperature plasma,” Russ. J. Non-Ferrous Met. 55(6), 585–591 (2014).

    Article  Google Scholar 

  21. H. C. Kim, J. K. Yoon, J. M. Doh, I. Y. Ko, and I. J. Shon, “Rapid sintering process and mechanical properties of binderless ultra fine tungsten carbide,” Mater. Sci. Eng. A 435–436, 717–724 (2006).

    Article  Google Scholar 

  22. H. C. Kim, I. J. Shon, J. K. Yoon, S. K. Lee, and Z. A. Munir, “One step synthesis and densification of ultra-fine WC by high-frequency induction combustion,” Int. J. Refractory Met. Hard Mater. 24, 202–209 (2006).

    Article  Google Scholar 

  23. H. C. Kim, I. J. Shon, J. E. Garay, and Z. A. Munir, “Consolidation and properties of sub-micron tungsten carbide by field-activated sintering,” Int. J. Refractory Met. Hard Mater. 22, 257–263 (2004).

    Article  Google Scholar 

  24. A. Gubernat, P. Rutkowski, G. Grabowski, and D. Zientara, “Hot pressing of tungsten carbide with and without sintering additives,” Int. J. Refractory Met. Hard Mater. 43, 193–199 (2014).

    Article  Google Scholar 

  25. T. S. Srivatsan, R. Woods, M. Petraroli, and T. S. Sudarshan, “An investigation of the influence of powder particle size on microstrucutre and hardness of bulk samples of tungsten carbide,” Powder Technol. 122, 54–60 (2002).

    Article  Google Scholar 

  26. A. K. Nanda, M. Watabe, and K. Kurokawa, “The sintering kinetics of ultrafine tungsten carbide powders,” Ceram. Int. 37(7), 2643–2654 (2011).

    Article  Google Scholar 

  27. C. P. Buhsmer and P. H. Crayton, “Carbon self-diffusion in tungsten carbide,” J. Mater. Sci. 6(7), 981–988 (1971).

    Article  Google Scholar 

  28. Properties, Producing and Application of Refractory Compounds. Handbook, Ed. by T. Ya. Kosolapova (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  29. G. Erdelyi and D. L. Beke, “Dislocation and grain boundary diffusion in non-metallic system,” in Diffusion in Non-Metallic Solids (Part 1)” (Group III Condensed Mater., London-Bornstein, 1999), Vol. 33B1, Chapter 11, pp. 1–48.

    Chapter  Google Scholar 

  30. G. V. Samsonov and I. M. Vinitskii, The Refractory Compounds (Metallurgiya, Moscow, 1976).

    Google Scholar 

  31. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Metals and Alloys Recrystallization (National Univ. of Science and Technology MISiS, Moscow, 2005) [in Russian].

    Google Scholar 

  32. V. N. Chuvil’deev, Nonequilibrium Grain Boundaries in Metals. Theory and Application (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  33. S. L. Kharatyan, H. A. Chatilyan, and L. H. Arakelyan, “Kinetics of tungsten carbidization under non-isothermal conditions,” Mater. Res. Bull. 43(4), 897–906 (2008).

    Article  Google Scholar 

  34. R. K. Madhav, T. N. Rao, and J. Joardar, “Stability on nanostructured W-C phases during carburization of WO3,” Mater. Chem. Phys. 128(1–2), 121–126 (2011).

    Google Scholar 

  35. G. M. Vol’dman, Yu. V. Levinskii, Yu. V. Blagoveshchenskii, N. V. Isaeva, Yu. I. Mel’nik, and N. V. Blagoveshchenskaya, “Process kinetics which happen under plasmochemical nanopowders of tungstenhydrogen system annealing in hydrogen,” Fiz. Khim. Obrab. Mater., No. 4, 23–27 (2012).

    Google Scholar 

  36. A. Adorian, W. D. Schubert, A. Schön, A. Bock, and B. Zeiler, “WC grain growth during the early stages of sintering,” Int. J. Refractory Met. Hard Mater. 24, 365–373 (2006).

    Article  Google Scholar 

  37. A. V. Nokhrin, “Effect of grain-boundary diffusion acceleration during recrystallization in submicrocrystalline metals and alloys prepared by severe plastic deformation,” Tech. Phys. Lett. 38(7), 630–633 (2012).

    Article  Google Scholar 

  38. A. M. Glaeser and J. W. Evans, “Effect of grain boundary migration on apparent boundary diffusion coefficient,” Acta Metall. 34(8), 1545–1552 (1986).

    Article  Google Scholar 

  39. D. Prokoshkina, L. Klinger, A. Moros, G. Wilde, E. Rabkin, and S. V. Divinski, “Effect of recrystallization on diffusion in ultrafine-grained Ni,” Acta Mater. 69, 314–325 (2014).

    Article  Google Scholar 

  40. V. N. Chuvil’deev, A. V. Nokhrin, O. E. Pirozhnikova, and V. I. Kopylov, “Diffusion properties variation for nonequilibrium grain boundaries under annealing of microcrystalline materials produced by means of intensive plastic deformation. Part 1. Recovery of diffusion properties of nonequilibrium grain boundaries under annealing,” Materialovedenie, No. 4, 3–12 (2013).

    Google Scholar 

  41. S. Lay, “HRTEM investigation of dislocation interactions in WC,” Int. J. Refractory Met. Hard Mater. 41, 416–421 (2013).

    Article  Google Scholar 

  42. F. L. Zhang, C. Y. Wang, and M. Zhu, “Nanostructured WC/Co composite powder prepared by high energy ball milling,” Scripta Mater. 49(3), 1123–1128 (2003).

    Article  Google Scholar 

  43. T. Ungar, A. Borbely, G. R. Goren-Muginstein, S. Berger, and A. R. Rosen, “Particle-size, size distribution and dislocations in nanocrystalline tungstencarbide,” Nanostruct. Mater. 11(1), 103–111 (1999).

    Article  Google Scholar 

  44. A. Fick, “Uber Diffusion,” Ann. Phys. Chem. 94(1), 59–86 (1855).

    Article  Google Scholar 

  45. V. Zait, Diffusion in Metals (Inostrannaya Literatura, Moscow, 1958) [in Russian].

    Google Scholar 

  46. B. S. Bokshtein, Diffusion in Metals (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  47. S. I. Averin and M. I. Alymov, “Sintering diagrams for golden powders,” Perspekt. Mater., No. 2, pp. 5–8 (2013).

    Google Scholar 

  48. V. S. Shustov, I. A. Zaletova, S. I. Averin, V. A. Zelenskii, A. B. Anikudinov, and M. I. Alymov, “Sintering diagram of titanium carbide powders,” Nanotechnol. Russ., 7(11–12), 649 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Chuvil’deev.

Additional information

Original Russian Text © V.N. Chuvil’deev, Yu.V. Blagoveshchenskiy, A.V. Nokhrin, N.V. Sakharov, M.S. Boldin, N.V. Isaeva, S.V. Shotin, Yu.G. Lopatin, E.S. Smirnova, A.A. Popov, O.A. Belkin, A.V. Semenycheva, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvil’deev, V.N., Blagoveshchenskiy, Y.V., Nokhrin, A.V. et al. Sparking plasma sintering of tungsten carbide nanopowders. Nanotechnol Russia 10, 434–448 (2015). https://doi.org/10.1134/S1995078015030040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015030040

Keywords

Navigation