Skip to main content
Log in

Mechanism of Sm2MoO6 Phase Formation from a Mechanically Activated Oxide Mixture

  • DYNAMICS OF PHASE TRANSITIONS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The mechanism of phase formation from the initial and the mechanically activated (m/a) mixture of Sm2O3+MoO3 oxides is studied by differential scanning calorimetry (DSC) in an oxygen atmosphere. It is shown that different mechanisms of samarium oxymolybdate synthesis are realized in these two cases. As a result of the mechanochemical action at room temperature, a nanosized mixture of Sm2(MoO4)3 and Sm2O3 is formed. Upon heating, Sm2(MoO4)3 is crystallized at the first stage and its interaction with Sm2O3 in the second stage at 900°C leads to the synthesis of oxymolybdate Sm2MoO6 with a scheelite structure, and this structure type is stable up to 1400°C. The kinetic experiment in a DSC cell shows only an apparent similarity of the phase formation mechanism with a decrease of the main exoeffects by 70°C for a m/a mixture of oxides. At the same time, the study of the mechanism of phase formation by isothermal exposure at different temperatures reveals the main advantages of ceramic synthesis from an activated oxide mixture. The total conductivity of Sm2MoO6 with a scheelite structure, which turned out to be of the p-type (1 × 10−6 S/cm at 600°C), is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. G. Blasse, J. Inorg. Nucl. Chem. 28, 1488 (1966). https://doi.org/10.1016/0022-1902(66)80185-9

    Article  CAS  Google Scholar 

  2. L. H. Brixner, A. W. Sleight, and M. S. Licis, J. Solid State Chem. 5 (2), 186 (1972). https://doi.org/10.1016/0022-4596(72)90027-8

    Article  CAS  Google Scholar 

  3. J. S. Xue, M. R. Antonio, and L. Soderholm, Chem. Mater. 7, 333 (1995). https://doi.org/10.1021/cm00050a015

    Article  CAS  Google Scholar 

  4. K. P. Mani, G. Vimal., P. R. Biju, C. Joseph, et al., ECS J. Solid State Sci. Technol. 4 (5), 67 (2015). https://doi.org/10.1149/2.0131505jss

    Article  CAS  Google Scholar 

  5. K. Selvakumar, T. H. Oh, T. Vijayaraj, R. K Gokul, et al., Colloids Surf. A 650, 129545 (2022). https://doi.org/10.1016/j.colsurfa.2022.129545

    Article  CAS  Google Scholar 

  6. Q. Li and V. Thangadurai, J. Power Sources 196 (1), 169 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.055

    Article  CAS  Google Scholar 

  7. V. K. Yanovskii and V. I. Voronkova, Fiz. Tverd. Tela 19, 3318 (1977).

    CAS  Google Scholar 

  8. E. I. Orlova, Y. A. Morkhova, A. V. Egorova, et al., J. Phys. Chem. C 126 (23), 9623 (2022). https://doi.org/10.1021/acs.jpcc.2c01837

    Article  CAS  Google Scholar 

  9. A. V. Shlyakhtina, M. Avdeev, N. V. Lyskov, et al., Dalton Trans. 49 (9), 2833 (2020). https://doi.org/10.1039/C9DT04724G

    Article  CAS  PubMed  Google Scholar 

  10. A. Chychko, L. Teng, and S. Seetharaman, Steel Res. Int. 81 (9), 784 (2010). https://doi.org/10.1002/srin.201000055

    Article  CAS  Google Scholar 

  11. A. V. Shlyakhtina, I. V. Kolbanev, and L. G. Shcherbakova, Chem. Phys. Rep. 17 (8), 1463 (1998).

    Google Scholar 

  12. A. V. Shlyakhtina, I. V. Kolbanev, and L. G. Shcherbakova, Khim. Fiz. 20, 94 (2001).

    Google Scholar 

  13. I. V. Kolbanev, E. N. Degtyarev, et al., J. Am. Ceram. Soc. 104 (11), 5698 (2021). https://doi.org/10.1111/jace.17939

    Article  CAS  Google Scholar 

  14. A. V. Shlyakhtina, I. V. Kolbanev, E. N. Degtyarev, et al., Solid State Ionics 320, 272 (2018). https://doi.org/10.1016/j.ssi.2018.02.004

    Article  CAS  Google Scholar 

  15. E. M. Bayan, T. G. Lupeiko, and L. E. Pustovaya, Russ. J. Phys. Chem. B 13, 383 (2019). https://doi.org/10.1134/S1990793119020131

    Article  CAS  Google Scholar 

  16. L. G. Mamsurova, N. G. Trusevich, A. A. Vishnev et al., Russ. J. Phys. Chem. B 14, 986 (2020). https://doi.org/10.1134/S199079312006024X

    Article  CAS  Google Scholar 

  17. A. A. Vasilev, E. L. Dzidziguri, M. N. Efimov, et al., Russ. J. Phys. Chem. B 15, 381 (2021). https://doi.org/10.1134/S1990793121030313

    Article  CAS  Google Scholar 

  18. M. I. Alymov, B. S. Seplyarskii, S. G. Vadchenko, et al, Russ. J. Phys. Chem. B 15, 352 (2021). https://doi.org/10.1134/S1990793121020135

    Article  CAS  Google Scholar 

  19. T. Schustereit, S.L. Müller, T. Schleid, et al., Crystals 1 (4), 244 (2011). https://doi.org/10.3390/cryst1040244

    Article  CAS  Google Scholar 

  20. K. A. Chebyshev, T. S. Berezhnaya, E. V. Chaika, et al., “Chemical problems of modern time 2022,” in Proceedings of the VI International Scientific Conference of Students, Postgraduate Students and Young Scientists (Donetsk, 2022).

  21. T. N. Bondarenko, V. N. Uvarov, S. V. Borisenko, et al., J. Korean Phys. Soc. 32, S65 (1998).

    CAS  Google Scholar 

Download references

Funding

The work was supported partially by the subsidy from the Ministry of Education and Science allocated by the FRC CP RAS for the implementation of the state assignment (registration no. 122040500071-0, 122040500068-0). Measurements of the conductivity of the samples were carried out within the framework of the state task of the FRC PCP MC RAS (FFSG-2024-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Baldin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldin, E.D., Vorobieva, G.A., Kolbanev, I.V. et al. Mechanism of Sm2MoO6 Phase Formation from a Mechanically Activated Oxide Mixture. Russ. J. Phys. Chem. B 18, 203–209 (2024). https://doi.org/10.1134/S1990793124010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010056

Keywords:

Navigation