Skip to main content
Log in

Molecular Modeling of the Interaction of a Cluster of Chromium-Containing Polyacrylonitrile with Pollutant Gases

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The possibility of the adsorption of priority pollutant gases (nitrogen dioxide, methane, ammonia, sulfur oxide (II), hydrogen sulfide, ozone, carbon monoxide, carbon monoxide (II), chlorine) on the surface of chromium-containing pyrolyzed polyacrylonitrile (pPAN) is evaluated. A model of a cluster of chromium-containing pPAN (Cr-PAN) is constructed. The thermodynamic parameters of the following systems are determined by the method of molecular modeling and compared: Cr-pPAN cluster–gas molecule, Cr-pPAN cluster–oxygen molecule, Cr-pPAN cluster–water molecule, Cr-PAN cluster–oxygen molecule–gas molecule, and Cr–pPAN cluster–water molecule–gas molecule. The effect of a water molecule on the process of adsorption of pollutant gases on the surface of a Cr–PAN cluster and the absence of an effect of an oxygen molecule located in the immediate vicinity of the clusters are revealed. It is established that Cr-pPAN has the property of selective adsorption of the following gases: nitrogen dioxide, chlorine, and ammonia. Within the density functional theory (DFT), the force parameters of the Cr–pPAN structure are estimated and the increase in the contact surface zone upon the introduction of a Cr2O3 molecule is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. F. Ke, Q. Zhang, L. Ji, et al., Compos. Commun. 27, 100817 (2021). https://doi.org/10.1016/j.coco.2021.100817

    Article  Google Scholar 

  2. G. N. Gerasimov, V. F. Gromov, M. I. Ikim, and L. I. Trakhtenberg, Khim. Fiz. 40 (11), 65 (2021). https://doi.org/10.31857/S0207401X21110030

    Article  Google Scholar 

  3. V. L. Bodneva, M. A. Kozhushner, V. S. Posvyanskii, and L. I. Trakhtenberg, Khim. Fiz. 38 (1), 75 (2019). https://doi.org/10.1134/S0207401X19010060

    Article  Google Scholar 

  4. W. Wang, Y. Zheng, X. Jin, et al., Nano Energy 56, 588 (2019). https://doi.org/10.1016/j.nanoen.2018.11.082

    Article  CAS  Google Scholar 

  5. M. N. Efimov, V. E. Sosenkin, Yu. M. Volfkovich, et al., Electrochem. Commun. 96, 98 (2018). https://doi.org/10.1016/j.elecom.2018.10.016

    Article  CAS  Google Scholar 

  6. Z. Imanian, F. Hormozi, M. Torab-Mostaedi, and M. Asadollahzadeh, Sep. Purif. Technol. 289, 120749 (2022). https://doi.org/10.1016/j.seppur.2022.120749

    Article  CAS  Google Scholar 

  7. V. V. Kozlov, G. P. Karpacheva, V. S. Petrov, and E. V. Lazovskaya, Polym. Sci., Ser. A 43, 20 (2001).

    CAS  Google Scholar 

  8. L. Laffont, M. Monthioux, V. Serin, et al., Carbon 42, 2485 (2004). https://doi.org/10.1016/j.carbon.2004.04.043

    Article  CAS  Google Scholar 

  9. H. Yoshida and N. Sato, Rus. J. Phys. Chem. A 110, 4232 (2006). https://doi.org/10.1021/jp0546397

    Article  CAS  Google Scholar 

  10. V. V. Kozlov, L. V. Kozhitov, V. G. Kostishyn, et al., IOP Conf. Ser: Mater. Sci. Eng. 5, 012021 (2009). https://doi.org/10.1088/1757-899X/5/1/012021

  11. O. Merdrignac-Conanec, Y. Bernicot, and J. Guyader, Sens. Actuators B 63, 86 (2000). https://doi.org/10.1016/S0925-4005(00)00302-6

    Article  CAS  Google Scholar 

  12. R. V. Ghorpade, D. W. Cho, and S. C. Hong, Carbon 121, 502 (2017). https://doi.org/10.1016/j.carbon.2017.06.015

    Article  CAS  Google Scholar 

  13. Kim Ye-Na, Park Eun-Young, and Lee Deuk Yong, J. Korean Ceram. Soc. 44, 194 (2007). https://doi.org/10.4191/kcers.2007.44.4.194

    Article  Google Scholar 

  14. V. S. Eremin, L. M. Bronshtein, V. P. D’yachkova, et al., Vysokomol. Soedin., Ser. A 35 (4), 450 (1993).

    CAS  Google Scholar 

  15. S. P. Solodovnikov, L. M. Bronshtein, T. P. Loginova, et al., Vysokomol. Soedin., Ser. B 35 (1), 26 (1993).

    CAS  Google Scholar 

  16. M. M. Avilova, E. A. Mar’eva, O. V. Popova, and T. A. Finochenko, Zh. Fiz. Khim. 94 (6), 898 (2020). https://doi.org/10.31857/S0044453720060047

    Article  Google Scholar 

  17. M. M. Avilova, E. A. Mar’eva, O. V. Popova, and T. G. Ivanova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 63 (4), 49 (2020). https://doi.org/10.6060/ivkkt.20206304.6008

    Article  CAS  Google Scholar 

  18. M. M. Avilova and V. V. Petrov, Khim. Fiz. 37 (4), 69 (2018). https://doi.org/10.7868/S0207401X18040088

    Article  Google Scholar 

  19. M. M. Avilova and V. V. Petrov, Khim. Fiz. 36 (7), 90 (2017). https://doi.org/10.7868/S0207401X17070020

    Article  Google Scholar 

  20. M. M. Avilova and V. V. Petrov, Chemosensors 6 (3), 39 (2018). https://doi.org/10.3390/chemosensors6030039

    Article  CAS  Google Scholar 

  21. A. K. Gupta, D. K. Paliwal, and P. Bajaj, J. Appl. Polym. Sci. 58 (7), 1161 (1995). https://doi.org/10.1002/app.1995.070580710

    Article  CAS  Google Scholar 

  22. M. Surianarayanan, R. Vijayaraghavan, and K. V. Raghavan, J. Polym. Sci. Part A: Polym. Chem. 36 (14), 2503 (1998). https://doi.org/10.1002/(SICI)1099-0518(199810)36:14<2503::AID-POLA9>3.0.CO;2-T

    Article  CAS  Google Scholar 

  23. N. L. Allinger, J. Am. Chem. Soc. 99 (2), 8127 (1977). https://doi.org/10.1021/ja00467a001

    Article  CAS  Google Scholar 

  24. J. J. P. Stewart, J. Mol. Modeling 19 (1), 1 (2013). https://doi.org/10.1007/s00894-012-1667-x

    Article  CAS  Google Scholar 

  25. A. Klamt and G. Schuurmann, J. Chem. Soc., Perkin Trans. 2, No. 5, 799 (1993). https://doi.org/10.1039/P29930000799

  26. B. P. Pritchard, D. Altarawy, B. Didier, et al., J. Chem. Inf. Model. 59 (11), 4814 (2019). https://doi.org/10.1021/acs.jcim.9b00725

    Article  CAS  PubMed  Google Scholar 

  27. K. Anandan and V. Rajendran, Mater. Lett. 146, 99 (2015). https://doi.org/10.1016/j.matlet.2015.02.014

    Article  CAS  Google Scholar 

  28. J. Baker, J. Comput. Chem. 7 (4), 385 (1986). https://doi.org/10.1002/jcc.540070402

    Article  CAS  Google Scholar 

  29. D. A. Ponomarev, Candidate’s Dissertation in Mathematics and Physics (Inst. Fiz. Met. im. M.N. Mikheeva UrO RAN, Yekaterinburg, 2018).

  30. MOPAC2016. James J.P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, 2016. http://openmopac.net/.

  31. S. Ito, D. G. Fedorov, Y. Okamoto, and S. Irle, Comput. Phys. Commun. 228, 152 (2018). https://doi.org/10.1016/j.cpc.2018.01.014

    Article  CAS  Google Scholar 

  32. M. M. Abdullah, F. M. Rajab, and S. M. Al-Abbas, AIP Adv. 4, 027121 (2014). https://doi.org/10.1063/1.4867012

    Article  CAS  Google Scholar 

  33. K. M. Skjelbred, Astrand Per-Olof, et al., AIP Conf. Proc. 1702, 090061 (2015). https://doi.org/10.1063/1.4938869

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Popova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avilova, M.M., Zolotareva, N.V. & Popova, O.V. Molecular Modeling of the Interaction of a Cluster of Chromium-Containing Polyacrylonitrile with Pollutant Gases. Russ. J. Phys. Chem. B 17, 329–335 (2023). https://doi.org/10.1134/S1990793123020203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123020203

Keywords:

Navigation