Skip to main content
Log in

Study of a Two-Stage Pyrolytic Conversion of Dried Sewage Sludge into Synthesis Gas

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A comprehensive study of the two-stage thermal processing of dried sewage sludge (SS) into synthesis gas with a high hydrogen content is carried out. The data of the thermogravimetric (TG) analysis of the studied material are used to determine the kinetic parameters of its decomposition. An experimental study of the pyrolysis of dried SS in a fixed-bed reactor makes it possible to reveal the main regularities in the formation of pyrolysis products (semicoke, tar, noncondensable gas, and water). Using the data of gas chromatography-mass spectrometry, the quality of liquid pyrolysis products is assessed. It is shown that the two-stage thermochemical conversion of the initial material, which combines pyrolysis and the subsequent heterogeneous cracking of volatile pyrolysis products, makes it possible to effectively obtain a fairly pure high-calorie gas, the main components of which are hydrogen and carbon monoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. J. Vasco-Correa, S. Khanal, A. Manandhar, and A. Shah, Bioresour. Technol. 247, 1015 (2018).

    Article  CAS  Google Scholar 

  2. T. E. Seiple, A. M. Coleman, and R. L. Skaggs, J. Environ. Manage 197, 673 (2017).

    Article  CAS  Google Scholar 

  3. Z. B. Namsaraev, P. M. Gotovtsev, A. V. Komova, and R. G. Vasilov, Renewable Sustainable Energy Rev. 81, 625 (2018).

    Article  Google Scholar 

  4. J. Oladejo, K. Shu, X. Luo, G. Yang, and T. Wu, Energies 12, 60 (2019).

    Article  CAS  Google Scholar 

  5. M. Kacprzak, E. Neczaj, K. Fijałkowski, et al., Environ. Res. 156, 39 (2017).

    Article  CAS  Google Scholar 

  6. M. Schell, T. Horst, and P. Quicker, J. Environ. Manage 263, 110367 (2020).

    Article  Google Scholar 

  7. S. S. A. Syed-Hassan, Y. Wang, S. Hu, S. Su, and J. Xiang, Renewable Sustainable Energy Rev. 80, 888 (2017).

    Article  CAS  Google Scholar 

  8. N. Gao, K. Kamran, C. Quan, and P. T. Williams, Prog. Energy Combust. Sci. 79, 100843 (2020).

    Article  Google Scholar 

  9. G. Jiang, D. Xu, B. Hao, L. Liu, S. Wang, and Z. Wu, J. Clean. Prod. 311, 127811 (2021).

    Article  CAS  Google Scholar 

  10. V. V. Khaskhachikh, O. M. Larina, G. A. Sychev, G. Ya. Gerasimov, and V. M. Zaichenko, High Temp. 59, 373 (2021).

    Article  CAS  Google Scholar 

  11. A. M. Tereza, G. L. Agafonov, E. K. Anderzhanov, S. P. Medvedev, S. V. Khomik, S. K. Petrov and M. V. Chernyshov, Russ. J. Phys. Chem. B 14, 654 (2020).

    Article  CAS  Google Scholar 

  12. P. N. Brevnov, L. A. Novokshonova, V. G. Krasheninnikov, M. V. Gudkov, E. V. Koverzanova, S. V. Usachev, N. G. Shilkina, and S. M. Lomakin, Russ. J. Phys. Chem. B 13, 825 (2019).

    Article  CAS  Google Scholar 

  13. J. Neumann, N. Jager, A. Apfelbacher, et al., Biomass. Bioenergy 89, 91 (2016).

    Article  CAS  Google Scholar 

  14. F. Zhu, R. Zhang, L. Zhao, and J. Qi, Renewable Sustainable Energy Rev. 135, 110260 (2021).

    Article  Google Scholar 

  15. M. Shahabuddin, B. B. Krishna, T. Bhaskar, and G. Perkins, Bioresour. Technol. 299, 122557 (2020).

    Article  CAS  Google Scholar 

  16. O. Alves, L. Calado, R. M. Panizio, M. Goncales, E. Monteiro, and P. Brito, Waste Manage. 131, 148 (2021).

    Article  CAS  Google Scholar 

  17. P. Brachi, S. di Fraia, N. Massarotti, and L. Vanoli, Energy Conver. Manage.: X 13, 100171 (2022).

    CAS  Google Scholar 

  18. V. A. Lavrenov, O. M. Larina, V. A. Sinel’shchikov, and G. A. Sychev, High Temp. 54, 892 (2016).

    Article  CAS  Google Scholar 

  19. V. V. Khaskhachikh, V. F. Kornil’eva, and G. Ya. Gerasimov, Inzh.-Fiz. Zh. 94, 599 (2021).

    Google Scholar 

  20. P. Thipkhundthod, V. Meeyoo, P. Rangsunvigit, and T. Rirksomboon, J. Anal. Appl. Pyrolysis 79, 78 (2007).

    Article  Google Scholar 

  21. B. Qi et al., J. Anal. Appl. Pyrolysis 105, 43 (2014).

    Article  Google Scholar 

  22. H. Shahbeig and M. Nosrati, Renewable Sustainable Energy Rev. 119, 109567 (2020).

    Article  CAS  Google Scholar 

  23. S. Naqvi, R. Tari, and Z. Hameed, Fuel 233, 529 (2018).

    Article  CAS  Google Scholar 

  24. Q. Xu, S. Tang, J. Wang, and J. H. Ko, Process Saf. Environ. Prot. 115, 49 (2018).

    Article  CAS  Google Scholar 

  25. A. G. Barneto, J. A. Carmona, J. E. M. Alfonso, and J. D. Blanco, J. Anal. Appl. Pyrolys. 86, 108 (2009).

    Article  CAS  Google Scholar 

  26. G. Gerasimov, V. Khaskhachikh, O. Potapov, et al., Waste Manage. 87, 218 (2019).

    Article  CAS  Google Scholar 

  27. Y.-C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, and G. W. Huber, J. Phys. Chem. C 113, 20097 (2009).

    Article  CAS  Google Scholar 

  28. F. Huang, Y. Yu, and Y. Huang, J. Anal. Appl. Pyrolysis 130, 36 (2018).

    Article  CAS  Google Scholar 

  29. M. Haghighat, N. Majidian, A. Hallajisani, and M. Samipourgiri, Sustain. Energy Technol. Assess 42, 100870 (2020).

    Google Scholar 

  30. X. Liu, F. Zhu, R. Zhang, L. Zhao, and J. Qi, Renewable Sustainable Energy Rev. 135, 110260 (2021).

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out under grant no. 20-58-00043 (Bel_a) “Experimental and theoretical study of kinetic processes in gases” of the Russian Foundation for Basic Research (registration number AAAA-A19-119012990112-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Gerasimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, G.Y., Khaskhachikh, V.V., Sychev, G.A. et al. Study of a Two-Stage Pyrolytic Conversion of Dried Sewage Sludge into Synthesis Gas. Russ. J. Phys. Chem. B 16, 1067–1074 (2022). https://doi.org/10.1134/S1990793122060045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122060045

Keywords:

Navigation