Skip to main content
Log in

Common Processes of the Hydration of Chloroacetic Acids

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The mass spectra of negative ions of aqueous solutions of completely neutralized monochloroacetic acid (MCA), dichloroacetic acid (DCA), and trichloroacetic acid (TCA) with a concentration of 0.01 mol/L at 20°C are obtained by the mass spectrographic method of electrospraying electrolyte solutions in vacuum. In all the distributions according to the degree of hydration of the acid residue, the dependence of the ion current intensity on the number of water molecules in the ion current is found. At an acid concentration of 0.01 mol/L, the number of hydrated monochloroacetic and dichloroacetic ions decreases monotonically with the increasing degree of hydration. For a TCA solution, the ion current intensity reaches the maximum of the distribution for two water molecules in the ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. L. L. Lifongo, D. J. Bowden, and P. Brimblecombe, Chemosphere 55, 467 (2004). https://doi.org/10.1016/j.chemosphere.2003.11.006

    Article  CAS  PubMed  Google Scholar 

  2. R. J. B. Peters, J. Environ. Monit. 5, 275 (2003). https://doi.org/10.1039/b209757p

    Article  CAS  PubMed  Google Scholar 

  3. L. Wang, Q. Zhang, B. Chen, Y. Bu, et al., J. Hazard. Mater. 391, 122143 (2020). https://doi.org/10.1016/j.jhazmat.2020.122143

  4. Yu. I. Skurlatov, E. V. Vichutinskaya, N. I. Zaitseva, E. V. Shtamm, V. O. Shvydkii, L. V. Semenyak and I. S. Baikova, Russ. J. Phys. Chem. B 11, 576 (2017).

    Article  CAS  Google Scholar 

  5. X. Zhang and R. A. Minear, Water Res. 36, 3665 (2002).

    Article  CAS  Google Scholar 

  6. E. V. Shtamm, Yu. I. Skurlatov, A. V. Roshchin, V. O. Shvydkii, and L. V. Semenyak, Russ. J. Phys. Chem. B 13, 986 (2019).

    Article  Google Scholar 

  7. E. J. Hoekstra, Chemosphere 52, 355 (2003).

    Article  CAS  Google Scholar 

  8. T. E. Lewis, T. F. Wolfinger, and M. L. Barta, Environ. Int. 30, 1119 (2004). https://doi.org/10.1016/j.envint.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  9. C. Wu, D. Wei, J. Fan, and L. Wang, Chemosphere 44, 1293 (2001). https://doi.org/10.1016/s0045-6535(00)00273

    Article  CAS  PubMed  Google Scholar 

  10. L. Weissflog, G. Krueger, and N. Elansky, Chemosphere 65, 975 (2006). https://doi.org/10.1016/j.chemosphere.2006.03.039

    Article  CAS  PubMed  Google Scholar 

  11. J. C. Wenger, S. le Calvé, H. W. Sidebottom, et al., Environ. Sci. Technol. 38 (3), 831 (2004).

    Article  CAS  Google Scholar 

  12. L. L. Lifongo, D. J. Bowden, and P. Brimblecombe, Int. J. Phys. Sci. 5, 738 (2010).

    CAS  Google Scholar 

  13. G. V. Karpov, Russ. J. Electrochem. 46, 95 (2010). https://doi.org/10.1134/S102319351001012X

  14. G. V. Karpov, O. A. Vinogradova, E. S. Vasil’ev, and I. I. Morozov, Russ. J. Phys. Chem. B 12, 684 (2018).

    Article  CAS  Google Scholar 

  15. G. V. Karpov, O. A. Vinogradova, E. S. Vasil’ev, N. I. Butkovskaya, I. I. Morozov, Yu. I. Petrov, and A. G. Syromyatnikov, Khim. Bezopasn. 1 (2), 97 (2017). https://doi.org/10.25514/CHS.2017.2.10984

    Article  Google Scholar 

  16. G. V. Karpov, I. I. Morozov, E. S. Vasiliev, et al., Chem. Phys. Lett. 586, 40 (2013). https://doi.org/10.1016/j.cplett.2013.09.037

  17. D. V. Zlenko and S. V. Stovbun, Russ. J. Phys. Chem. B 8, 613 (2014). https://doi.org/10.7868/S0207401X14080135

    Article  CAS  Google Scholar 

  18. S. S. Krishnamurthy and S. Soundararajan, Tetrahedron 24, 167 (1968). https://doi.org/10.1016/0040-4020(68)89018-0

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grant no. 19-05-50076, Microworld, from the Russian Foundation for Basic Research and state assignment no. АААА-А20-120021390044-2 of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Morozov.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, E.S., Karpov, G.V., Volkov, N.D. et al. Common Processes of the Hydration of Chloroacetic Acids. Russ. J. Phys. Chem. B 15, 228–232 (2021). https://doi.org/10.1134/S1990793120060305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120060305

Keywords:

Navigation