Skip to main content
Log in

Ab initio Calculation of the Dipole Moment Function of the OH Radical Ground State

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Recently it has been theoretically predicted and experimentally confirmed that at altitudes of 80–110 km from the Earth’s surface the signals of the global navigation satellite systems (GNSS) are delayed as a result of a multiple resonance scattering by the Rydberg complexes. The attenuation of GNSS signals occurs mainly in the lower atmosphere layers, where the greatest effect is achieved through interaction with charged aerosol layers. A thunderstorm conditions are of particular interest whereby the presence of strong electric fields and hydration of aerosols can lead to the detachment of OH radicals from water clusters. Since the spectrum of radiation and absorption of these radicals for rotational transitions is part of the microwave range, they are expected to make an additional resonance contribution to the delay of radio signals thus necessitating a detailed study of the electronic structure of the OH radical. This paper offers the ab initio calculations of the dipole moment function for the ground X2Π state of the OH molecule using the dipole length approach and the finite-field method. The comparison with the experiment shows that in extended model spaces the approximation of the dipole length leads to more accurate values of the dipole moment than the finite-field method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Helm, R. Stosius, O. Montenbruck, et al., Proceedings of the International Conference on Tsunami Warning (ICTW), Bali, Indonesia, 2008. http://bib.telegrafenberg.de/ueber-uns/publikationen-der-bibliothek/?year=2008& uid=gbeyerle&lang=de&disableFrame=true.

    Google Scholar 

  2. O. Montenbruck, P. Steigenberger, L. Prange, et al., Adv. Space Res. 59, 1671 (2017).

    Article  Google Scholar 

  3. G. V. Golubkov and G. K. Ivanov, Khim. Fiz. 22 (10), 25 (2003).

    CAS  Google Scholar 

  4. G. V. Golubkov, G. K. Ivanov, and M. G. Golubkov, Khim. Fiz. 24 (6), 3 (2005).

    Google Scholar 

  5. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Russ. J. Phys. Chem. B 6, 112 (2012).

    Article  CAS  Google Scholar 

  6. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Dokl. Phys. 57, 461 (2012).

    Article  CAS  Google Scholar 

  7. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Dokl. Phys. 58, 424 (2013).

    Article  CAS  Google Scholar 

  8. G. V. Golubkov, M. I. Manzhelii, and A. A. Lushnikov, Russ. J. Phys. Chem. B 8, 604 (2014).

    Article  CAS  Google Scholar 

  9. C. Xiong, C. Stolle, and H. Luhr, Space Weather 14, 563 (2016).

    Article  Google Scholar 

  10. G. V. Golubkov, M. G. Golubkov, and I. V. Karpov, Russ. J. Phys. Chem. B 5, 412 (2011).

    Article  CAS  Google Scholar 

  11. N. V. Ardelyan, V. L. Bychkov, G. V. Golubkov, and K. V. Kosmachevskii, Russ. J. Phys. Chem. B 12, 179 (2018).

    Article  CAS  Google Scholar 

  12. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Russ. J. Phys. Chem. B 8, 103 (2014).

    Article  CAS  Google Scholar 

  13. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, and A. A. Lushnikov, Russ. J. Phys. Chem. B 10, 77 (2016).

    Article  CAS  Google Scholar 

  14. D. V. Shalashilin, S. Y. Umanskii, and Y. M. Gershenzon, Chem. Phys. 168, 315 (1992).

    Article  CAS  Google Scholar 

  15. W. L. Meerts and A. Dymanus, Can. J. Phys. 53, 2123 (1975).

    Article  CAS  Google Scholar 

  16. J. A. Coxon, K. V. L. N. Sastry, J. A. Austin, et al., Can. J. Phys. 57, 619 (1979).

    Article  CAS  Google Scholar 

  17. A. B. Meinel, Astrophys. J. 111, 555 (1950).

    Article  CAS  Google Scholar 

  18. R. E. Murphy, J. Chem. Phys. 54, 4852 (1971).

    Article  CAS  Google Scholar 

  19. M. Lopez-Puertas, M. Garcia-Comas, B. Funke, et al., J. Geophys. Res. 109, D09307 (2004).

    Google Scholar 

  20. R. R. Reddy, K. R. Gopal, Y. N. Ahammed, et al., Ind. J. Pure Appl. Phys. 43, 237 (2005).

    CAS  Google Scholar 

  21. A. G. Muñoz, J. C. McConnell, I. C. McDade, et al., Icarus 176, 75 (2005).

    Article  CAS  Google Scholar 

  22. M. P. J. van der Loo and G. C. Groenenboom, J. Chem. Phys. 126, 114314 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. M. P. J. van der Loo and G. C. Groenenboom, J. Chem. Phys. 128, 159902 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. F. J. Mulligan and R. P. Lowe, Ann. Geophys. 26, 795 (2008).

    Article  CAS  Google Scholar 

  25. P. F. Bernath and R. Colin, J. Mol. Spectrosc. 257, 20 (2009).

    Article  CAS  Google Scholar 

  26. J. S. A. Brooke, P. F. Bernath, C. M. Western, et al., J. Quant. Spectrosc. Rad. Transf. 168, 142 (2016).

    Article  CAS  Google Scholar 

  27. D. N. Turnbull and R. P. Lowe,J. Chem. Phys. 89, 2763 (1988).

    Article  CAS  Google Scholar 

  28. D. D. Nelson, Jr., A. Schiffman, D. J. Nesbitt, et al., J. Chem. Phys. 90, 5443 (1989).

    Article  CAS  Google Scholar 

  29. D. D. Nelson, Jr., A. Schiffman, and D. J. Nesbitt, J. Chem. Phys. 90, 5455 (1989).

    Article  CAS  Google Scholar 

  30. D. D. Nelson, Jr., A. Schiffman, D. J. Nesbitt, et al., J. Chem. Phys. 93, 7003 (1990).

    Article  CAS  Google Scholar 

  31. C. Chackerian, Jr., D. Goorvitch, A. Benidar, et al., J. Quant. Spectrosc. Rad. Transf. 48, 667 (1992).

    Article  CAS  Google Scholar 

  32. A. Goldman, W. G. Schoenfeld, D. Goorvitch, et al., J. Quant. Spectrosc. Rad. Transf. 59, 453 (1998).

    Article  CAS  Google Scholar 

  33. W. J. Stevens, G. Das, A. C. Wahl, et al., J. Chem. Phys. 61, 3686 (1974).

    Article  CAS  Google Scholar 

  34. S. Chu, M. Yoshimine, and B. Liu, J. Chem. Phys. 61, 5389 (1974).

    Article  CAS  Google Scholar 

  35. W. Meyer, Theor. Chim. Acta 35, 277 (1974).

    Article  CAS  Google Scholar 

  36. W. Meyer and P. Rosmus, J. Chem. Phys. 63, 2356 (1975).

    Article  CAS  Google Scholar 

  37. S. R. Langhoff, E. F. van Dishoeck, R. Wetmore, et al., J. Chem. Phys. 77, 1379 (1982).

    Article  CAS  Google Scholar 

  38. H.-J. Werner, P. Rosmus, and E.-A. Reinsch, J. Chem. Phys. 79, 905 (1983).

    Article  CAS  Google Scholar 

  39. S. R. Langhoff, H-J. Werner, and P. Rosmus, J. Mol. Spectrosc. 118, 507 (1986).

    Article  CAS  Google Scholar 

  40. S. R. Langhoff, C. W. Bauschlicher, Jr., and P. R. Taylor, J. Chem. Phys. 86, 6992 (1987).

    Article  CAS  Google Scholar 

  41. S. R. Langhoff, C. W. Bauschlicher, Jr., and P. R. Taylor, J. Chem. Phys. 91, 5953 (1989).

    Article  CAS  Google Scholar 

  42. F. H. Mies, J. Mol. Spectrosc. 53, 150 (1974).

    Article  CAS  Google Scholar 

  43. H. D. Cohen and C. C. J. Roothaan, J. Chem. Phys. 43, 34 (1965).

    Article  Google Scholar 

  44. J. A. Pople, J. W. McIver, Jr., and N. S. Ostlund, J. Chem. Phys. 49, 2960 (1968).

    Article  CAS  Google Scholar 

  45. G. H. F. Diercksen, B. O. Roos, and A. J. Sadlej, Chem. Phys. 59, 29 (1981).

    Article  CAS  Google Scholar 

  46. A. D. Buckingham, Quart. Rev. Chem. Soc 13, 183 (1959).

    Article  Google Scholar 

  47. D. D. Kharlampidi, A. I. Dementiev, and S. O. Adamson, Russ. J. Phys. Chem. A 84, 611 (2010).

    Article  CAS  Google Scholar 

  48. H. Li and R. J. le Roy, J. Chem. Phys. 126, 224301 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. W. L. Meerts and A. Dymanus, Chem. Phys. Lett. 23, 45 (1973).

    Article  CAS  Google Scholar 

  50. K. I. Peterson, G. T. Fraser, and W. Klemperer, Can. J. Phys. 62, 1502 (1984).

    Article  CAS  Google Scholar 

  51. H.-J. Werner, P. J. Knowles, G. Knizia, et al., MOLPRO, Vers. 2010.1, a package of ab initio programs. http://www.molpro.net.

    Google Scholar 

  52. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 103, 4572 (1995).

    Article  CAS  Google Scholar 

  53. M. Douglas and N. M. Kroll, Ann. Phys. (N.Y.) 82, 89 (1974).

    Article  CAS  Google Scholar 

  54. M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. J. Luque and D. R. Crosley, J. Chem. Phys. 109, 439 (1998).

    Article  CAS  Google Scholar 

  56. R. J. Le Roy, J. Quant. Spectrosc. Rad. Transf. 186, 158 (2017).

    Article  CAS  Google Scholar 

  57. C. Carlone and F. W. Dalby, Can. J. Phys. 47, 1945 (1969).

    Article  CAS  Google Scholar 

  58. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure: IV Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

    Book  Google Scholar 

  59. B. Ruscic, A. F. Wagner, L. B. Harding, et al., J. Phys. Chem. A 106, 2727 (2002).

    Article  CAS  Google Scholar 

  60. G. V. Golubkov, M. I. Manzhelii, and I. V. Karpov, Russ. J. Phys. Chem. B 7, 641 (2013).

    Article  CAS  Google Scholar 

  61. G. V. Golubkov, Russ. J. Phys. Chem. B 5, 883 (2011).

    Article  CAS  Google Scholar 

  62. G. V. Golubkov and G. K. Ivanov, J. Exp. Theor. Phys. 77, 574 (1993).

    Google Scholar 

  63. G. V. Golubkov, M. G. Golubkov, and A. N. Romanov, J. Exp. Theor. Phys. 94, 489 (2002).

    Article  CAS  Google Scholar 

  64. G. V. Golubkov, M. G. Golubkov, A. N. Romanov, et al., Phys. Chem. Chem. Phys. 5, 3174 (2003).

    Article  CAS  Google Scholar 

  65. S. O. Adamson, R. Dzh. Byunker, G. V. Golubkov, M. G. Golubkov, and A. I. Dement’ev, Russ. J. Phys. Chem. B 3, 195 (2009).

    Article  Google Scholar 

  66. G. V. Golubkov, M. G. Golubkov, and R. J. Buenker, J. Exp. Theor. Phys. 112, 187 (2011).

    Article  CAS  Google Scholar 

  67. G. K. Ivanov and G. V. Golubkov, Chem. Phys. Lett. 107, 261 (1984).

    Article  CAS  Google Scholar 

  68. E. M. Balashov, G. V. Golubkov, and G. K. Ivanov, Sov. Phys. JETP 59, 1188 (1984).

    Google Scholar 

  69. G. K. Ivanov and G. V. Golubkov, Sov. Phys. JETP 72, 783 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Adamson.

Additional information

Original Russian Text © S.O. Adamson, D.D. Kharlampidi, G.V. Golubkov, M.I. Manzhelii, S.S. Nabiev, M.G. Golubkov, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 12, pp. 20–27.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamson, S.O., Kharlampidi, D.D., Golubkov, G.V. et al. Ab initio Calculation of the Dipole Moment Function of the OH Radical Ground State. Russ. J. Phys. Chem. B 12, 970–976 (2018). https://doi.org/10.1134/S1990793118060027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118060027

Keywords

Navigation