Skip to main content
Log in

Effect of a Cocurrent Gas Flow on the Velocity and Concentration Limits of Combustion Wave Propagation in Granulated Ti + C + xAl2O3 Mixtures

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this paper, we studied the effects of a cocurrent gas flow on the velocity and combustion limits of a granulated Ti + C mixture diluted with inert corundum granules. In the whole range of dilutions, an increase in the combustion rate was observed for the flow of active and inert gases. This effect is several times greater than that calculated based on the filtration combustion theory. Concentration combustion limits (75 wt %), the incomplete combustion of Ti + C granules, and the ratio of the combustion rates of the undiluted mixture and the mixture at the propagation limit (from 2 to 3) are well predicted by the percolation theory. The same combustion limit of concentration in the flow of inert and active gases and without flow indicates a percolation-phase transition as the reason for the cessation of combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Seplyarskii and R. A. Kochetkov, in Proceedings of the 3rd International Conference on Non-isothermic Phenomena and Processes: From Thermal Explosion Theory to Structural Macrokinetics (ISMAN, Chernogolovka, 2016), p.175.

    Google Scholar 

  2. B. S. Seplyarskii and R. A. Kochetkov, Int. J. Self-Propag. High-Temp. Synth. 25, 132 (2016). doi 10.3103/S1061386216020084

    Article  CAS  Google Scholar 

  3. A. P. Aldushin and A. G. Merzhanov, Thermal Wave Propagation in Heterogeneous Media (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  4. J. Nahmias, H. Téphany, J. Duarte, et al., Can. J. For. Res. 30, 1318 (2000). doi 10.1139/x00-047

    Article  Google Scholar 

  5. T. Beer, Combust. Sci. Technol. 72, 297 (1990).

    Article  Google Scholar 

  6. A. P. Aldushin and B. S. Seplyarskii, Sov. Phys. Dokl. 23, 483 (1978).

    Google Scholar 

  7. Yu. Sh. Matros, Nonstationary Processes in Catalytic Reactors (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  8. F. Kreith and U. Black, Basic Heat Transfer (Harper and Row, New York, 1980).

    Google Scholar 

  9. D. Carole, N. Fréty, S. Etienne-Calas, C. Merlet, and R.-M. Marin-Ayral, Mater. Sci. Eng. A 419, 365 (2006).

    Article  CAS  Google Scholar 

  10. P. S. Grinchuk and O. S. Rabinovich, Fiz. Goreniya Vzryva 4, 41 (2004).

    Google Scholar 

  11. A. G. Merzhanov and A. S. Mukas’yan, Solid-Flame Combustion (Torus Press, Moscow, 2007) [in Russian].

    Google Scholar 

  12. M. D. Rintoul and S. Torquato, J. Phys. A: Math. Gen. 30, 585 (1997). doi 10.1088/0305-4470/30/16/005

    Article  Google Scholar 

  13. P. S. Grinchuk, JEPTER 86, 875 (2013).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Seplyarskii.

Additional information

Original Russian Text © B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 9, pp. 25–32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seplyarskii, B.S., Kochetkov, R.A. & Lisina, T.G. Effect of a Cocurrent Gas Flow on the Velocity and Concentration Limits of Combustion Wave Propagation in Granulated Ti + C + xAl2O3 Mixtures. Russ. J. Phys. Chem. B 12, 852–859 (2018). https://doi.org/10.1134/S199079311805010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311805010X

Keywords

Navigation