Skip to main content
Log in

Modern technologies for detection and identification of explosive agents and devices

  • External Effects on Physicochemical Transformations
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The physical principles and most effective modern technologies for detecting and identifying explosive agents and devices and the analytical potential of these technologies were considered to solve the problems of antiterrorist security and countermeasures against terrorist attacks using explosive devices based on explosive agents. Particular attention was paid to the possibility of detecting explosive agents and devices, in particular, during automated control at the entrance to airports, railway stations, and various institutions and organizations and security check of suspicious persons, luggage inspection, etc. An analysis of the possibilities for identifying explosive agents and devices can evidently create conditions for expanding the existing technologies or combining them with new technologies for detecting not only various types of explosives, but also narcotic drugs, firearms, cold weapons, radioactive substances, poisonous substances, highly toxic substances, biological agents, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Terrorism: Challenge and Response, Ed. by B. Netanyahu (Transaction Publ., Piscataway, NJ, 1982).

  2. J. M. Hanhimaki and B. Blumenau, An International History of Terrorism: Western and Non-Western Experiences (Routledge, London, 2013).

    Google Scholar 

  3. J. M. Lutz and B. J. Lutz, Global Terrorism (Routledge, London, 2013).

    Google Scholar 

  4. R. M. Medina and G. F. Hepner, The Geography of International Terrorism: An Introduction to Spaces and Places of Violent Non-State Groups (CRC, Boca Raton, FL, 2013).

    Book  Google Scholar 

  5. C. C. Combs and M. W. Slann, Encyclopedia of Terrorism (Facts on File Library of World History), 2nd ed. (Facts on File, New York, 2007).

    Google Scholar 

  6. Sh. Sh. Nabiev and L. A. Palkina, in The Atmosphere and Ionosphere: Elementary Processes, Monitoring, and Ball Lightning, Physics of Earth and Space Environments, Ed. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, Berlin, 2014), p. 113.

    Google Scholar 

  7. Toxico-Terrorism: Emergency Response and Clinical Approach to Chemical, Biological, and Radiological Agents, Ed. by R. McFee and J. Leikin (McGraw-Hill Education, New York, 2007).

  8. V. Marshall, Major Chemical Hazards (Ellis Horwood, Chichester, 1987).

    Google Scholar 

  9. L. Nulhakiem, Potential Hazards in Chemical Industries. http://www.chemicalplantsafety.net/hazard-recognition/potential-hazards-in-chemical-industries/.

  10. N. P. Cheremisinoff and T. A. Davletshina, Fire and Explosion Hazards Handbook of Industrial Chemicals (Elsevier, New York, 1998).

    Google Scholar 

  11. V. A. Kiryushin, T. V. Motalova, S. V. Safonkin, and G. V. Shmidt, Toxicology of Chemical Hazards and Measures in the Centers of Chemical Defeat (RGMU, Rjazan’, 2004) [in Russian].

    Google Scholar 

  12. V. S. Isaev, Chemically Dangerous Substances. Methods of Forecasting and Estimation of Chemical Situation (Voennye znaniya, Moscow, 2007) [in Russian].

    Google Scholar 

  13. R. Kazi, Nuclear Terrorism. The New Terror of the 21st Century (Inst. Defense Studies Anal. Press, New Delhi, 2013).

    Google Scholar 

  14. Nuclear Terrorism: Countering the Threat, Ed. by B. Volders and T. Sauer (Routledge, London, 2016).

  15. S. L. Hoenig, Handbook of Chemical Warfare and Terrorism (Greenwood, Westport, 2002).

    Google Scholar 

  16. Advances in Biological and Chemical Terrorism Countermeasures, Ed. by R. J. Kendall, S. M. Presley, G. P. Austin, and P. N. Smith (CRC, New York, 2008).

  17. V. N. Aleksandrov and V. I. Emel’yanov, Toxicants (Voenizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  18. Chemical Warfare Agents, Ed. by S. M. Somani (Academic, San Diego, 1992).

  19. Z. Franke, Chemistry of Toxicants (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

  20. L. S. Ivlev and Yu. A. Dovgalyuk, Physics of Atmospheric Aerosol Systems (NIIKh SPbGU, St. Petersburg, 1999) [in Russian].

    Google Scholar 

  21. Handbook of Toxicology of Chemical Warfare Agents, Ed. by R. Gupta (Academic, New York, 2009).

  22. A. Melnick, Biological, Chemical, and Radiological Terrorism (Springer, Berlin, Heidelberg, 2010).

    Google Scholar 

  23. E. Croddy, Chemical and Biological Warfare (Copernicus, Göttingen, 2002).

    Book  Google Scholar 

  24. D. Liddick, Eco-Terrorism: Radical Environmental and Animal Liberation Movements (Greenwood, Portsmouth, 2006).

    Google Scholar 

  25. P. I. Sidorov, Ekol. Cheloveka, No. 7, 12 (2005).

    Google Scholar 

  26. G. Weimann and B. Hoffman, Terrorism in Cyberspace: The Next Generation (Columbia Univ. Press, Washington, 2015).

    Google Scholar 

  27. Cyber Warfare and Cyber Terrorism, Ed. by L. Janczewski and A. Colarik (Idea Group Reference, Copenhagen, 2007).

  28. A. V. Taran, Vestn. RUDN, Ser. Politol., No. 2, 37 (2009).

    Google Scholar 

  29. Stand-off Detection of Suicide Bombers and Mobile Subjects, Ed. by H. Schubert and A. Rimski-Korsakov (Springer, Dordrecht, Netherlands, 2006).

  30. S. Yelleti, E. Wilkins, R. A. Sitdikov, and I. Seoudi, in Sensors for Chemical and Biological Applications, Ed. by M. Ram and V. N. Y. Bhethanabotla (CRC, New York, 2010), p. 277.

    Google Scholar 

  31. Counterterrorist Detection Techniques of Explosives, Ed. by J. Yinon (Elsevier, New York, 2011).

  32. E. M. A. Hussein and E. J. Walker, Rad. Meas. 29, 581 (1998).

    Article  CAS  Google Scholar 

  33. S. Singh and M. Singh, Signal Proces. 83, 31 (2003).

    Article  Google Scholar 

  34. Aspects of Explosives Detection, Ed. by M. Marshall (Elsevier, New York, 2008).

  35. Sh. Sh. Nabiev and L. A. Palkina, in Proceedings of the 5th International Conference on Atmosphere, Ionosphere, Safety AIS-2016, Ed. by I. V. Karpov (I. Kant Baltic Fed. Univ., Kaliningrad, 2016), p. 64.

    Google Scholar 

  36. Z. Bielecki, J. Janucki, A. Kawalec, et al., Metrol. Meas. Syst. 19, 3 (2012).

    Article  Google Scholar 

  37. A. V. Kuznetsov, in Detection of Bulk Explosives Advanced Techniques Against Terrorism, Vol. 138 of NATO Sciece Series, Ed. by H. Schubert and A. Kuznetsov (Kluwer Academic, Dordrecht, 2004), p. 7.

    Book  Google Scholar 

  38. K. Wells and D. A. Bradley, Appl. Radiat. Isotopes 70, 1729 (2012).

    Article  CAS  Google Scholar 

  39. H. E. Martz, C. M. Logan, D. J. Schneberk, and P. J. Shull, X-Ray Imaging: Fundamentals, Industrial Techniques, and Applications (CRC, New York, 2010).

    Google Scholar 

  40. R. C. Runkle and T. A. White, Nucl. Instrum. Methods Phys. Res. A 603, 510 (2009).

    Article  CAS  Google Scholar 

  41. A. I. Laikin and Yu. A. Platovskikh, At. Energy 109, 207 (2010).

    Article  CAS  Google Scholar 

  42. G. Yu. Grigor’ev, M. D. Karetnikov, Sh. Sh. Nabiev, et al., Vopr. Oboron. Tekh., Ser. 16: Tekh. Sredstva Protivodeitsv. Terrorizmu, Nos. 7–8, 33 (2008).

    Google Scholar 

  43. Committee of the Review Existing and Potential Standoff Explosives Detection Techniques, Existing and Potential Standoff Explosives Detection Techniques (The National Academies Press, Washington DC, 2004). http://www.nap.edu.

  44. A. M. Yousri, A. M. Osman, W. A. Kansouh, et al., Arm. J. Phys. 5, 1 (2012).

    CAS  Google Scholar 

  45. V. S. Grechishkin and N. Ya. Sinyavskii, Phys. Usp. 40, 393 (1997).

    Article  Google Scholar 

  46. Explosives Detection using Magnetic and Nuclear Resonance Techniques, Ed. by J. Fraissard and O. Lapina (Springer, Dordrecht, Netherlands, 2009).

  47. J. A. S. Smith, T. J. Rayner, M. D. Rowe, et al., J. Magn. Reson. 204, 139 (2010).

    Article  CAS  Google Scholar 

  48. J. I. Steinfeld and J. Wormhoudt, Ann. Rev. Phys. Chem. 49, 203 (1998).

    Article  CAS  Google Scholar 

  49. J. Yinon and S. Zitrin, The Analysis of Explosives, Pergamon Series in Analytical Chemistry (Pergamon, New York, London, 2013).

    Google Scholar 

  50. M. Leahy-Hoppa, M. Fitch, and R. Osiander, Anal. Bioanal. Chem. 395, 247 (2009).

    Article  CAS  Google Scholar 

  51. V. L. Vaks, E. G. Domracheva, Sh. Sh. Nabiev, et al., in Proceedigns of the 6th International Conference on Technical Means of Countering Terrorist and Criminal Explosions, St. Petersburg, 2010, p. 38.

    Google Scholar 

  52. D. Etayo, I. Maestrojuan, J. Teniente, et al., J. Infrared Millim. Terahertz Waves 34, 468 (2013).

    Article  CAS  Google Scholar 

  53. U. Puc, A. Abina, M. Rutar, et al., Appl. Opt. 54, 4495 (2015).

    Article  CAS  Google Scholar 

  54. Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, et al., Gorenie Plazmokhim. 11, 19 (2013).

    Google Scholar 

  55. D. Strle, B. Štefane, E. Zupanič, et al., Sensors 14, 11467 (2014).

    Article  CAS  Google Scholar 

  56. M. J. Lefferts and M. R. Castell, Anal. Methods 7, 9005 (2015).

    Article  Google Scholar 

  57. V. M. Gruznov, M. N. Baldin, A. L. Makas’, and B. G. Titov, J. Anal. Chem. 66, 1121 (2011).

    Article  CAS  Google Scholar 

  58. Gas Chromatography, Ed. by C. Poole (Elsevier, New York, 2012).

  59. P.-H. Stefanuto, K. A. Perrault, J-F. Focant, and S. L. Forbes, Chromatography 2, 213 (2015).

    Article  CAS  Google Scholar 

  60. T. P. Forbes and E. Sisco, Anal. Chem. 86, 7788 (2014).

    Article  CAS  Google Scholar 

  61. E. Maiolini, S. Girotti, E. Ferri, et al., Ovidius Univ. Ann. Chem. 20, 57 (2009).

    Google Scholar 

  62. A. L. Makas, M. L. Troshkov, A. S. Kudryavtsev, and V. M. Lunin, J. Chromatogr. B 800, 63 (2004).

    Article  CAS  Google Scholar 

  63. M. Mäkinen, M. Nousiainen, and M. Sillanpää, Mass Spectrosc. Rev. 30, 940 (2011).

    Google Scholar 

  64. J. M. Nilles, T. R. Connell, S. T. Stokes, and H. D. Durst, Propell. Explos. Pyrotech. 35, 446 (2010).

    Article  CAS  Google Scholar 

  65. E. S. Chernetsova, G. E. Morlock, and I. A. Revelsky, Russ. Chem. Rev. 80, 235 (2011).

    Article  CAS  Google Scholar 

  66. D. H. Nguyen, S. Locquiao, P. Huynh, et al., in Electronic Noses and Sensors for the Detection of Explosives, Ed. by J. W. Gardner and J. Yinon, NATO Sci. Ser. II: Math. Phys. Chem. (Kluwer Academic, Dordrecht, 2004), p. 71.

    Google Scholar 

  67. A. M. Jiménez and M. J. Navas, J. Hazard. Mater. 106, 1 (2004).

    Article  CAS  Google Scholar 

  68. R. Ewing, D. A. Atkinson, G. A. Eiceman, and G. J. Ewing, Talanta 54, 515 (2001).

    Article  CAS  Google Scholar 

  69. I. A. Buryakov, J. Anal. Chem. 66, 674 (2011).

    Article  CAS  Google Scholar 

  70. G. A. Eiceman, Z. Karpas, and H. H. Hill, Jr., Ion Mobility Spectrometry, 3rd ed. (CRC, New York, London, 2013).

    Google Scholar 

  71. Y. Sun, Field Detection Technologies for Explosives (ILM Publ., Dorset, 2009).

    Google Scholar 

  72. D. Meschede, Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics, 2nd ed. (Wiley-VCH, New York, 2007).

    Google Scholar 

  73. S. Hooker and C. Webb, Laser Physics (Oxford Univ. Press, Oxford, 2010).

    Google Scholar 

  74. V. V. Apollonov, High-Power Optics: Lasers and Applications, Vol. 192 of Springer Series in Optical Sciences (Springer, Dordrecht, 2014).

    Google Scholar 

  75. D. S. Moore, Sense Imaging, No. 8, 9 (2007).

    Article  Google Scholar 

  76. A. I. Karapuzikov, Sh. Sh. Nabiev, A. I. Nadezhdinskii, and Yu. N. Ponomarev, Atmos. Ocean. Opt. 24, 133 (2011).

    Article  CAS  Google Scholar 

  77. C. Bauer, U. Willer, and W. Schade, Opt. Eng. 49, 111126 (2010).

    Article  CAS  Google Scholar 

  78. P. M. Pellegrino, E. L. Holthoff, and M. E. Farrell, Laser-Based Optical Detection of Explosives (CRC, Boca Raton, 2015).

    Google Scholar 

  79. C. W. van Neste, L. R. Senesac, and T. Thundat, Anal. Chem. 81, 1952 (2009).

    Article  CAS  Google Scholar 

  80. S. Wallin, A. Pettersson, H. Ostmark, and A. Hobro, Anal. Bioanal. Chem. 395, 259 (2009).

    Article  CAS  Google Scholar 

  81. A. Mukherjee, S. von der Porten, and C. K. N. Patel, Appl. Opt. 49, 2072 (2010).

    Article  CAS  Google Scholar 

  82. L. A. Skvortsov, Quantum Electron. 42, 1 (2012).

    Article  CAS  Google Scholar 

  83. R. G. Smith, N. D’Souza, and S. Nicklin, Analyst 133, 571 (2008).

    Article  CAS  Google Scholar 

  84. N. Yu. Il’kukhin, Cand. Sci. (Tech. Sci.) Dissertation (SPb State Univ. Civil Aviation, St. Petersburg, 2016).

    Google Scholar 

  85. S. Singh, J. Hazard. Mater. 144, 15 (2007).

    Article  CAS  Google Scholar 

  86. X-M. Chen, B-Y. Su, X-H. Song, et al., Trends Anal. Chem. 30, 665 (2011).

    Article  CAS  Google Scholar 

  87. Z. Naal, J. H. Park, S. Bernhard, et al., Anal. Chem. 74, 140 (2002).

    Article  CAS  Google Scholar 

  88. N. Kumar and S. Kumbhat, Essentials in Nanoscience and Nanotechnology (Wiley, New York, 2016).

    Book  Google Scholar 

  89. R. Wilson, C. Clavering, and A. Hutchinson, J. Electroanal. Chem. 557, 109 (2003).

    Article  CAS  Google Scholar 

  90. V. Udod, J. Van, S. Osipov, et al., J. Phys.: Conf. Ser. 671, 012059 (2016).

    Google Scholar 

  91. V. Ryzhikov, S. Naydenov, G. Onyschenko, et al., Nucl. Instrum. Methods Phys. Res. A 603, 349 (2009).

    Article  CAS  Google Scholar 

  92. H. Vogel, Eur. J. Radiol. 63, 227 (2007).

    Article  CAS  Google Scholar 

  93. G. Zentai, Int. J. Signal Imaging Syst. Eng. 3, 13 (2010).

    Article  Google Scholar 

  94. A. Mouton and T. P. Breckon, J. X-Ray Sci. Technol. 23, 531 (2015).

    Article  Google Scholar 

  95. A. V. Kovalev, Mir Bezopasn., No. 5, 21 (2004).

    Google Scholar 

  96. Yu. I. Ol’shanskii, Sist. Bezopasn., Svyazi Kommunikats., No. 21, 18 (1998).

    Google Scholar 

  97. V. A. Klimenov, S. P. Osipov, and A. K. Temnik, Russ. J. Nondestr. Test. 49, 642 (2013).

    Article  Google Scholar 

  98. V. D. Ryzhikov, A. D. Opolonin, V. G. Volkov, et al., Visn. NTU KhPI, No. 34 (1007), 43 (2013).

    Google Scholar 

  99. A. Chalmers, Proc. SPIE 5071, 388 (2003).

    Article  Google Scholar 

  100. C. Paulus, J. Tabary, P. N. Billon, et al., J. Instrum. 8, 04003 (2013).

    Article  CAS  Google Scholar 

  101. R. V. Kishore Kumar and G. Murali, Int. J. Appl. Eng. Res. 11, 504.

  102. A. Vanimireddy and D. ArunaKumari, Int. J. Eng. Trends Technol. 3, 277 (2012).

    Google Scholar 

  103. G. Harding, Phys. Chem. 71, 869 (2004).

    CAS  Google Scholar 

  104. A. V. Kovalev, Spets. Tekh., No. 6, 16 (1999).

    Google Scholar 

  105. A. Buffler, Radiat. Phys. Chem. 71, 853 (2004).

    Article  CAS  Google Scholar 

  106. R. C. Runkle and T. A. White, Nucl. Instrum. Methods Phys. Res. A 603, 510 (2009).

    Article  CAS  Google Scholar 

  107. V. Yu. Plakhotnik and G. A. Polyakov, Vestn. KGPU, No. 2 (43), 97 (2007).

    Google Scholar 

  108. S. Steward and D. Forsht, Appl. Radiat. Isotopes 63, 795 (2005).

    Article  CAS  Google Scholar 

  109. L. Grodzins, Nucl. Instrum. Methods Phys. Res. B 56–57, 829 (1991).

    Article  Google Scholar 

  110. L. Z. Dzhilavyan, A. I. Karev, and V. G. Raevskii, Izv. Akad. Nauk, Ser. Fiz. 74, 635 (2010).

    Google Scholar 

  111. E. L. Reber, C. Larry, and G. Blackwood, Sens Imaging 8, 121 (2007).

    Article  Google Scholar 

  112. F. Brooks, M. Drosg, F. Smit, and C. Wikner, Appl. Radiat. Isotopes 70, 119 (2011).

    Article  CAS  Google Scholar 

  113. S. K. Sharma, S. Jakhar, R. Shukla, et al., Fusion Eng. Des. 85, 1562 (2010).

    Article  CAS  Google Scholar 

  114. A. Papp and J. Csikai, J. Radioanal. Nucl. Chem. 288, 363 (2011).

    Article  CAS  Google Scholar 

  115. M. D. Karetnikov, A. I. Klimov, K. N. Kozlov, E.A. Meleshko, I. E. Ostashev, N. A. Tupikin, G. V. Yakovlev, E. P. Bogolyubov, S. A. Korotkov, and T. O. Khasaev, Instrum. Exp. Tech. 49, 654 (2006).

    Article  CAS  Google Scholar 

  116. M. Karetnikov, A. Klimov, and S. Korotkov, Nucl. Instrum. Methods Phys. Res. B 261, 307 (2007).

    Article  CAS  Google Scholar 

  117. D. N. Vakhtin, A. V. Evsenin, A. V. Kuznetsov, et al., in Proceedings of the NATO ARW No. 977941 on Detection of Explosives and Land Mines: Methods and Field Experience, St. Petersburg, Russia, 2001, p. 59.

    Google Scholar 

  118. D. N. Vakhtin, I. Yu. Gorshkov, A. V. Evsenin, et al., in Detection and Disposal of Improvised Explosives, Ed. by H. Schubert and A. Kuznetsov (Springer, 2006), p. 87.

    Book  Google Scholar 

  119. V. M. Bystritskii, N. I. Zamyatin, E. V. Zubarev, V. L. Rapatsky, Yu. N. Rogov, I. V. Romanov, A. B. Sadovsky, A. V. Salamatin, M. G. Sapozhnikov, M. V. Safonov, V. M. Slepnev, and A. V. Philipov, Phys. Part. Nucl. Lett. 10, 442 (2013).

    Article  CAS  Google Scholar 

  120. L. Z. Dzhilavyan, A. I. Karev, and V. G. Raevsky, Bull. Russ. Acad. Sci.: Phys. 75, 257 (2011).

    Article  CAS  Google Scholar 

  121. W. P. Trower, Nucl. Instrum. Methods Phys. Res. B 79, 589 (1993).

    Article  Google Scholar 

  122. A. S. Belousov, A. I. Karev, E. I. Malinovskii, et al., Nauka Pr-vu, No. 6, 33 (2000).

    Google Scholar 

  123. A. I. Karev, V. G. Raevskii, Yu. A. Konyaev, et al., Elektron. NTB, No. 1, 54 (2002).

    Google Scholar 

  124. N. Fischer, T. M. Klapötke, J. Stierstorfer, and C. Wiedemann, Polyhedron 30, 2374 (2011).

    Article  CAS  Google Scholar 

  125. V. S. Grechishkin and N. Ya. Sinyavskii, Phys. Usp. 40, 393 (1997).

    Article  Google Scholar 

  126. A. Gregorovic and T. Apih, J. Magn. Resonance 198, 215 (2009).

    Article  CAS  Google Scholar 

  127. Explosives, 6th ed., Ed. by R. Meyer and J. Köhler (Wiley-VCH, New York, 2007).

  128. T. M. Osa, L. M. Cerionia, J. Forguez, et al., Physica B 389, 45 (2007).

    Article  CAS  Google Scholar 

  129. N. P. Semeikin, Yu. A. Sharshin, and B. V. Ekvist, Vzryvn. Delo, No. 105/62, 168 (2011).

    Google Scholar 

  130. Yu. I. Belyi, O. A. Potsepnya, G. K. Semin, et al., Spets. Tekh., No. 2, 32 (2002).

    Google Scholar 

  131. V. S. Grechishkin and N. Ya. Sinyavskii, Phys. Usp. 36, 980 (1993).

    Article  Google Scholar 

  132. V. S. Grechishkin, Appl. Phys. A 55, 505 (1992).

    Article  Google Scholar 

  133. V. S. Grechishkin and V. P. Anferov, Adv. Nucl. Quadruple Reson., No. 4, 71 (1980).

    CAS  Google Scholar 

  134. J. A. Smith, M. Blanz, T. J. Rayner, et al., J. Magn. Reson. 213, 191 (2011).

    Article  CAS  Google Scholar 

  135. X. Zhang, N. Schemm, S. Balkır, and M. W. Hoffman, IEEE Sensors J. 14, 497 (2014).

    Article  Google Scholar 

  136. D. J. Ingram, Spectroscopy at Radio and Microwave Frequencies (Springer, Berlin, 2012).

    Google Scholar 

  137. A. A. Krasil’nikov, Yu. Yu. Kulikov, V. G. Ryskin, and A. M. Shchitov, Izv. Akad. Nauk, Ser. Fiz. 67, 1786 (2003).

    Google Scholar 

  138. V. V. Tkachenko, N. S. Izhko, and M. I. Ugrin, Tekh. Prib. SVCh, No. 1, 50 (2008).

    Google Scholar 

  139. D. P. Soldatov, V. V. Gladun, Yu. A. Pirogov, et al., Uch. Zap. Fiz. Fakult. Mosk. Univ. 1, 120109 (2012).

    Google Scholar 

  140. D. T. Petkie, F. C. de Lucia, C. Casto, et al., Proc. SPIE 5989, 359 (2005).

    Google Scholar 

  141. T. Hu, Z. Xiao, J. Xu, and L. Wu, Proc. Eng. 7, 28 (2010).

    Article  Google Scholar 

  142. R. Appleby and R. N. Anderton, Proc. IEEE 95, 1683 (2007).

    Article  CAS  Google Scholar 

  143. S. T. Shipman and B. H. Pate, New Techniques in Microwave Spectroscopy (Wiley, New York, 2011).

    Book  Google Scholar 

  144. I. Jaeger, J. Stiens, G. Koers, et al., Microwave Opt. Tech. Lett. 48, 1722 (2006).

    Article  Google Scholar 

  145. Sh. Sh. Nabiev, V. L. Vaks, A. V. Volodin, et al., Nauka Tekhnol. Prom-sti, No. 2, 45 (2009).

    Google Scholar 

  146. V. L. Vaks, A. V. Volodin, Sh. Sh. Nabiev, et al., Vopr. Oboron. Tekh., Ser. 16: Tekh. Sr-va Protivodeistv. Terrorizmu, Nos. 11–12, 23 (2009).

    Google Scholar 

  147. M. C. Kemp, P. F. Taday, B. E. Cole, et al., Proc. SPIE 5070, 44 (2003).

    Article  Google Scholar 

  148. Y. Chen, H. Liu, Y. Deng, et al., Proc. SPIE 5411, 1 (2004).

    Article  Google Scholar 

  149. J. Chen, Y. Chen, H. Zhao, et al., Opt. Express 15, 12060 (2007).

    Article  CAS  Google Scholar 

  150. W. Tribe, D. A. Newnham, P. F. Taday, and M. C. Kemp, Proc. SPIE 5354, 168 (2004).

    Article  Google Scholar 

  151. K. Yamamoto, M. Yamaguchi, F. Miyamaru, et al., Jpn. J. Appl. Phys. 43, L414 (2004).

    Article  CAS  Google Scholar 

  152. L. Yun-Shik, Principles of Terahertz Science and Technology (Springer, New York, 2008).

    Google Scholar 

  153. Z. Zhang, Y. Zhang, G. Zhao, and C. Zhang, Optik 18, 325 (2007).

    Article  CAS  Google Scholar 

  154. Terahertz Spectroscopy and Imaging, Ed. by K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami (Springer, Heidelberg, 2012).

  155. J. F. Federici, B. Sculkin, F. Huang, et al., Semicond. Sci. Technol. 20, 266 (2005).

    Article  CAS  Google Scholar 

  156. C. Baker, W. R. Tribe, T. Lo, et al., Proc. SPIE 5790, 1 (2005).

    Article  Google Scholar 

  157. H. Liu, Y. Chen, G. J. Bastians, and X-C. Zhang, Opt. Express 14, 415 (2006).

    Article  CAS  Google Scholar 

  158. H. Zhong, A. Redo, Y. Chen, and X-C. Zhang, Proc. SPIE 6212, 62120L (2006).

    Article  CAS  Google Scholar 

  159. H. Hubers, A. D. Semenov, H. Richter, and U. Böttger, Proc. SPIE 6549, 65490A (2007).

    Article  Google Scholar 

  160. Trace Chemical Sensing of Explosives, Ed. by R. Woodfin (Wiley, New York, 2007).

  161. V. M. Gruznov, M. N. Baldin, and V. G. Filonenko, in Vapor and Trace Detection of Explosives for Anti-Terrorism Purposes, Ed. by M. Krausa and A. Reznev, NATO Sci. Ser. II 167, 87 (2004).

    Article  CAS  Google Scholar 

  162. B. T. Kenna, F. J. Conrad, and D. W. Hannum, in Proceedings of the 1st International Symposium on Explosion Detection Technology, Ed. by S. M. Khan (FAA, Atlantic City, New York, 1991), p. 510.

    Google Scholar 

  163. Sh. Sh. Nabiev, V. L. Vaks, A. V. Volodin, et al., Vopr. Oboron. Tekh., Ser. 16: Tekh. Sr-va Protivodeistv. Terrorizmu, Nos. 11–12, 78 (2009).

    Google Scholar 

  164. Sh. Sh. Nabiev, A. I. Nadezhdinskii, D. B. Stavrovskii, V. L. Vaks, E. G. Domracheva, S. I. Pripolzin, E. A. Sobakinskaya, and M. B. Chernyaeva, Russ. J. Phys. Chem. A 85, 1404 (2011).

    Article  CAS  Google Scholar 

  165. E. Bender, A. Hogan, D. Leggett, et al., J. Forensic Sci. 37, 1673 (1992).

    Article  CAS  Google Scholar 

  166. G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Powders (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  167. Energetic Materials: Thermophysical Properties, Predictions, and Experimental Measurements, Ed. by V. Boddu and P. Redner (CRC, Boca Raton, 2013).

  168. L. Mokalled, M. Al-Husseini, K. Y. Kabalan, and A. El-Hajj, Int. J. Sci. Eng. Res. 5, 337 (2014).

    Google Scholar 

  169. C. A. Krueger, C. Hilton, M. Osgood, et al., Int. J. Ion Mobil. Spec. 12, 33 (2009).

    Article  CAS  Google Scholar 

  170. V. M. Gruznov, Express Gas Chromatography for Trace Analysis in the Field (RITs NGU, Novosibirsk, 2014) [in Russian].

    Google Scholar 

  171. J. S. Caygill, F. Davis, and S. P. J. Higson, Talanta 88, 14 (2012).

    Article  CAS  Google Scholar 

  172. www.iut-berlin.info/fileadmin/user_upload/Literatur/Poster_Symposium_ISADE_FINEX.pdf (2011).

  173. A. T. Lebedev, Mass-Spectrometry for Analysis of Environmental Objects (Tekhnosfera, Moscow, 2013) [in Russian].

    Google Scholar 

  174. E. Hoffmann and V. Stroobant, Mass Spectrometry: Principles and Applications, 3rd ed. (Wiley-Interscience, New York, 2007).

    Google Scholar 

  175. N. Talaty, C. C. Mulligan, D. R. Justes, et al., Analyst 133, 1532 (2008).

    Article  CAS  Google Scholar 

  176. R. B. Cody, J. A. Laramée, and H. D. Durst, Anal. Chem. 77, 2297 (2005).

    Article  CAS  Google Scholar 

  177. Z. Takats, J. M. Wiseman, B. Gologan, and R. G. Cooks, Science 306, 471 (2004).

    Article  CAS  Google Scholar 

  178. M. Tourné, J. Forensic Res. 4 (6), S12 (2013).

    Google Scholar 

  179. V. D. Gladilovich and E. P. Podol’skaya, Nauch. Priborostr. 20 (4), 36 (2010).

    CAS  Google Scholar 

  180. A. L. Makas and M. L. Troshkov, J. Chromatogr. B 800, 55 (2004).

    Article  CAS  Google Scholar 

  181. Sh. Sh. Nabiev and L. A. Palkina, in Proceedings of the 3rd International Conference on Atmosphere, Ionosphere, Safety AIS-2012 (Kalinigrad, 2012), p. 122.

    Google Scholar 

  182. O. M. Primera-Pedrozo, Y. M. Soto-Feliciano, L. C. Pacheco-Londoño, and S. P. Hernández-Rivera, Sens. Imaging 10, 1 (2009).

    Article  Google Scholar 

  183. B. E. Bernacki and N. Hô, Proc. SPIE 6945, 694517 (2008).

    Article  CAS  Google Scholar 

  184. B. A. Paldus, B. G. Fidric, S. S. Sanders, et al., Proc. SPIE 5617, 312 (2004).

    Article  CAS  Google Scholar 

  185. Cavity Ring Down Spectroscopy: Techniques and Applications, Ed. by G. Berden and R. Engeln (Wiley, New York, 2009).

  186. M. Snels, T. Venezia, and L. Belfiore, Chem. Phys. Lett. 489, 134 (2010).

    Article  CAS  Google Scholar 

  187. H. Östmark, M. Nordberg, and T. E. Carlsson, Appl. Opt. 50, 5592 (2011).

    Article  Google Scholar 

  188. D. D. Tuschel, A. V. Mikhonin, B. E. Lemoff, and S. A. Asher, Appl. Spectrosc. 64, 425 (2010).

    Article  CAS  Google Scholar 

  189. G. Comanescu, C. K. Manka, J. Grun, et al., Appl. Spectrosc. 62, 833 (2008).

    Article  CAS  Google Scholar 

  190. G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).

    Article  CAS  Google Scholar 

  191. S. Sharma, A. K. Misra, and B. Sharma, Spectrochim. Acta A 61, 2404 (2005).

    Article  CAS  Google Scholar 

  192. B. Piorek, S. Lee, M. Moskovits, and C. Meinhart, Anal. Chem. 84, 9700 (2012).

    Article  CAS  Google Scholar 

  193. Laser-Induced Breakdown Spectroscopy, Ed. by A. W. Miziolek, V. Palleschi, and I. Schechter (Cambridge Univ. Press, Cambridge, UK, 2006).

  194. Laser-Induced Breakdown Spectroscopy.Theory and Applications, Ed. by S. Musazzi and U. Perini (Springer, Berlin, Heidelberg, 2014).

  195. X. Chen, D. Guo, F-S. Choa, et al., Appl. Opt. 52, 2626 (2013).

    Article  Google Scholar 

  196. K. L. McNesby and R. A. Pesce-Rodriguez, in Handbook of Vibrational Spectroscopy, Ed. by J. M. Chalmers and P. R. Griffiths (Wiley, West Sussex, UK, 2002), p. 3152.

    Google Scholar 

  197. Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, et al., Gorenie Plazmokhim. 11, 277 (2013).

    CAS  Google Scholar 

  198. Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, V. L. Zbarskii, N. V. Yudin, V. L. Vaks, E. G. Domracheva, and M. B. Chernyaeva, Russ. J. Phys. Chem. B 7, 203 (2013).

    Article  CAS  Google Scholar 

  199. E. N. Golubeva and Sh. Sh. Nabiev, in Proceedings of the 1st International Conference On the Boundary of Sciences, Physicochemical Series, Kazan, 2013, p. 43.

    Google Scholar 

  200. L. Pacheco-Londoño, W. Ortiz-Rivera, O. Primera-Pedrozo, and S. Hernandez-Rivera, Anal. Bioanal. Chem. 395, 323 (2009).

    Article  CAS  Google Scholar 

  201. S. P. Hernandez-Rivera, L. C. Pacheco-Londoño, W. Ortiz-Rivera, et al., in Explosive Materials: Classification, Composition and Properties, Ed. by T. J. Janssen (Nova Science, New York, 2011), p. 231.

    Google Scholar 

  202. L. A. Skvortsov, Quantum Electron. 41, 1051 (2012).

    Article  CAS  Google Scholar 

  203. C. Ramos and P. J. Dagdigian, Appl. Opt. 46, 620 (2007).

    Article  CAS  Google Scholar 

  204. J. Wojtas, J. Mikolajczyk, and Z. Bielecki, Sensors 13, 7570 (2013).

    Article  CAS  Google Scholar 

  205. D. Cherry, M. S. Khan, and M. N. Reddy, Def. Sci. J. 65, 25 (2015).

    Article  Google Scholar 

  206. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000).

    Book  Google Scholar 

  207. J. Sylvia, J. Janni, J. D. Klein, and K. M. Spencer, Anal. Chem. 72, 5834 (2000).

    Article  CAS  Google Scholar 

  208. J. I. Jeréz-Rozo, M. del Rocío Balaguera, A. Cabanzo, et al., Proc. SPIE 6201, 62012G (2006).

    Article  CAS  Google Scholar 

  209. M. Gaft and L. Nagli, Opt. Mater. 30, 1739 (2008).

    Article  CAS  Google Scholar 

  210. D. S. Moore and R. J. Scharff, Anal. Bioanal. Chem 393, 1618 (2009).

    Google Scholar 

  211. A. Nadezhdinskii, Ya. Ponurovskii, and D. Stavrovskii, Appl. Phys. B 90, 361 (2008).

    Article  CAS  Google Scholar 

  212. Y. Bai, S. R. Darvish, S. Slivken, et al., Appl. Phys. Lett. 92, 101105 (2008).

    Article  CAS  Google Scholar 

  213. L. A. Skvortsov, Laser Methods of Remote Detection of Chemical Compounds on Body Surface (Tekhnosfera, Moscow, 2016) [in Russian].

    Google Scholar 

  214. C. A. Munson, J. L. Gottfried, F. C. de Lucia, et al., Rep. No. ADA474060 (Army Research Lab Aberdeen Proving Ground MD Weapons and Mater. Research Directorate, 2007).

    Google Scholar 

  215. R. Hummel and T. Dubroca, in Encyclopedia of Analytical Chemistry. Applications, Theory and Instrumentation, Ed. by R. A. Meyers (Wiley, New York, Chichester, 2013), Vol. 1, p. 2148.

    Google Scholar 

  216. Sh. Sh. Nabiev, Vestn. RAEN, No. 1, 14 (2012).

    Google Scholar 

  217. J. Scaffidi, W. Pearman, M. Lawrence, et al., Appl. Opt. 43, 5243 (2004).

    Article  CAS  Google Scholar 

  218. J. J. Zayhowski and A. L. Wilson, Jr., IEEE J. Quantum Electron. 38, 1449 (2002).

    Article  CAS  Google Scholar 

  219. F. Tittel, G. Wysocki, A. Kosterev, and Y. Bakhirkin, in Mid-Infrared Coherent Sources and Applications, Ed. by M. Ebrahim-Zadeh and I. T. Sorokina (Springer, Berlin, 2007), p. 467.

    Google Scholar 

  220. R. Lewicki, G. Wysocki, A. Kosterev, and F. Tittel, Opt. Express 15, 7357 (2007).

    Article  CAS  Google Scholar 

  221. H. Wu, L. Dong, X. Liu, et al., Sensors 15, 26743 (2015).

    Article  CAS  Google Scholar 

  222. M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, Appl. Phys. B 77, 381 (2003).

    Article  CAS  Google Scholar 

  223. A. Mukherjee, M. Prasanna, M. Lane, et al., Appl. Opt. 47, 4884 (2008).

    Article  CAS  Google Scholar 

  224. M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, et al., Proc. Natl. Acad. Sci. USA 103, 19630 (2006).

    Article  CAS  Google Scholar 

  225. C. K. N. Patel, Eur. Phys. J. Spec. Top. 153, 1 (2008).

    Article  Google Scholar 

  226. C. Bauer, U. Willer, R. Lewicki, et al., J. Phys.: Conf. Ser. 157, 012002 (2009).

    Google Scholar 

  227. G. Yu. Grigor’ev, A. I. Karapuzikov, Sh. Sh. Nabiev, et al., Vopr. Oboron. Tekh., Ser. 16: Tekh. Sr-va Protivodeistv. Terrorizmu, Nos. 1–2, 86 (2009).

    Google Scholar 

  228. L. A. Skvortsov and E. M. Maksimov, Quantum Electron. 40, 565 (2010).

    Article  CAS  Google Scholar 

  229. K. H. Michaelian, Photoacoustic IR Spectroscopy: Instrumentation, Applications and Data Analysis (Wiley-VCH, New York, 2010).

    Book  Google Scholar 

  230. Sh. Sh. Nabiev, Remote Laser-Optical Methods of Detection and Identification of Rocket Fuel Components (Kurchatov. Inst., Moscow, 2010) [in Russian].

    Google Scholar 

  231. T. Arusi-Parpar, D. Heflinger, and R. Lavi, Appl. Opt. 40, 6677 (2001).

    Article  CAS  Google Scholar 

  232. C. Wynn, R. Palmacci, K. Kunz, et al., Proc. SPIE 6954, 695407 (2008).

    Article  CAS  Google Scholar 

  233. C. Bauer, J. Burgmeier, C. Bohling, et al., in Proceedings of the NATO Advanced Research Workshop on Stand-Off Detection of Suicide-Bombers and Mobile Subjects (Springer, Berlin, 2006), p. 27.

    Google Scholar 

  234. A. Portnov, I. Bar, and S. Rosenwaks, Appl. Phys. B 98, 529 (2010).

    Article  CAS  Google Scholar 

  235. J. Hildenbrand, J. Herbst, J. Wollenstein, and A. Lambrecht, Proc. SPIE 7222, 72220B (2009).

    Article  CAS  Google Scholar 

  236. A. Mukherjee, S. von der Porten, and C. K. N. Patel, Appl. Opt. 49, 2072 (2010).

    Article  CAS  Google Scholar 

  237. A. Mouton and T. P. Breckon, Pattern Recognit. 58, 1961 (2015).

    Article  Google Scholar 

  238. Yu. N. Gavrish, I. Yu. Vakhrushin, A. V. Pavlenko, et al., Vopr. At. Nauki Tekh., No. 2 (48), 3 (2010).

    Google Scholar 

  239. W. Zhang, X. Li, and Z. Xu, Proc. Eng., No. 7, 203 (2010).

    Article  CAS  Google Scholar 

  240. V. A. Petrunin, S. A. Ogorodnikov, M. A. Arlychev, and I. E. Shevelev, Mosc. Univ. Phys. Bull. 70, 118 (2015).

    Article  Google Scholar 

  241. A. L. Lehnert and K. J. Kearfott, Nucl. Technol. 172, 325 (2010).

    Article  CAS  Google Scholar 

  242. P. Lecoq, A. Annenkov, A. Gektin, et al., Inorganic Scintillators for Detector Systems (Springer, Berlin, Heidelberg, 2006).

    Google Scholar 

  243. V. L. Vaks, E. G. Domracheva, Sh. Sh. Nabiev, et al., in Proceedings of the 6th International Conference on Technical Means of Countering Terrorist and Criminal Explosions, St. Petersburg, 2010, p. 38.

    Google Scholar 

  244. Y. Jiang, B. Jin, W. Xu, et al., Sci. China Inf. Sci. 55, 64 (2012).

    Article  Google Scholar 

  245. A. Shurakov, Y. Lobanov, and G. Goltsman, Supercond. Sci. Technol. 29, 023001 (2016).

    Article  CAS  Google Scholar 

  246. V. L. Vaks, E. G. Domracheva, A. A. Lastovkin, et al., Vestn. Nizhegor. Univ., No. 6 (1), 81 (2013).

    Google Scholar 

  247. D. G. Paveliev, Yu. I. Koshurinov, A. S. Ivanov, A.N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, Semiconductors 46, 121 (2012).

    Article  CAS  Google Scholar 

  248. H.-B. Liu and X.-C. Zhang, Terahertz Frequency Detection and Identification of Materials and Objects, NATO Security through Science Series, Ed. by R. E. Miles (Springer, New York, 2007), p. 251.

    Book  Google Scholar 

  249. M. Greenfield, Y. Guo, and E. Bernstein, Chem. Phys. Lett. 430, 277 (2006).

    Article  CAS  Google Scholar 

  250. G. N. Shcherbakov, Spets. Tekh., No. 2, 18 (2000).

    Google Scholar 

  251. Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, et al., Vopr. Oboron. Tekh., Ser. 16: Tekh. Sr-va Protivodeistv. Terrorizmu, Nos. 11–12, 3 (2013).

    Google Scholar 

  252. R. F. Curl, F. Capasso, C. Gmachl, et al., Chem. Phys. Lett. 487, 1 (2010).

    Article  CAS  Google Scholar 

  253. Springer Handbook of Lasers and Optics, 2nd ed., Ed. by F. Träger (Springer, Berlin, Heidelberg, 2012).

  254. M. Troccoli, A. Lyakh, J. Fan, et al., Opt. Mater. Express 3, 1546 (2013).

    Article  CAS  Google Scholar 

  255. A. Grisard, E. Lallier, and B. Gérard, Opt. Mater. Express 2, 1020 (2012).

    Article  CAS  Google Scholar 

  256. A. Boyko, G. Marchev, V. Petrov, et al., Opt. Express 23, 33460 (2015).

    Article  CAS  Google Scholar 

  257. C. M. Chernin, Multipass Systems in Optics and Spectroscopy (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Sh. Nabiev.

Additional information

Original Russian Text © Sh.Sh. Nabiev, L.A. Palkina, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 10, pp. 3–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabiev, S.S., Palkina, L.A. Modern technologies for detection and identification of explosive agents and devices. Russ. J. Phys. Chem. B 11, 729–776 (2017). https://doi.org/10.1134/S1990793117050190

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117050190

Keywords

Navigation