Skip to main content
Log in

Conduction current and extraneous electric current in the global electric circuit

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The role of the conduction current and extraneous electric current in the global electric circuit is considered. The current associated with the formation of thunderstorm and rain clouds charges the ionosphere positively relative to the Earth and creates a potential difference of ~250 kV between them. A global electric field directed toward the Earth arises. An electric current attributable to the electric conductivity of the atmosphere flows under the action of this field, which tends to discharge the Earth–ionosphere capacitor and is directed oppositely to the charging current. This electric current flows in the dry air of fair-weather regions. Under polluted, warm, and moist air conditions, the role of nonelectric forces in the generation of electricity between the ionosphere and Earth increases. The slow recombination of large charged particles produced by air ionization and electron attachment to heavy particles increases the density of charges, which are transferred under the action of gravity and pressure gradients. The predominant condensation of water vapors on negative charges followed by their coagulation lead to the mass separation of charges in the gravity field with the settling of negative charges and the rise of positive ones, i.e., to the appearance of an extraneous electric current (ionosphere charging current) directed oppositely to the conduction current. The atmospheric conditions above the tectonic fault during the preparation of earthquakes are shown to contribute to the generation of an extraneous electric current. The key factors that determine the intensity of the seismogenic electric current, its role in the generation of seismogenic electric fields in the ionosphere, and their thermospheric and ionospheric effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Namgaladze, Russ. J. Phys. Chem. B 7, 589 (2013). doi:10.7868/S0207401X13090100

    Article  CAS  Google Scholar 

  2. M. J. Rycroft, S. Israelsson, and C. Price, J. Atmos. Sol.-Terr. Phys. 62, 1563 (2000). doi:10.1016/S13646826(00)00112–7

    Article  CAS  Google Scholar 

  3. D. Siingh, V. Gopalakrishnan, R. P. Singh, et al., Atmos. Res. 84, 91 (2007). doi:10.1016/jatmosres. 2006.05.005

    Article  Google Scholar 

  4. M. J. Rycroft and R. G. Harrison, Space Sci. Rev. 168, 363 (2012). doi:10.1007/s11214–011-830–8

    Article  CAS  Google Scholar 

  5. R. G. Harrison and K. S. Carslaw, Rev. Geophys. 41 (3), 2–1 (2003). 10.1029/2002RG000114

    Article  Google Scholar 

  6. V. I. Ermakov and Yu. I. Stozhkov, FIAN Preprint No. 2 (Fiz. Inst. AN, Moscow, 2004).

    Google Scholar 

  7. H. Svensmark, J. O. P. Pedersen, N. D. Marsh, et al., Proc. R. Soc. A: Math., Phys. Eng. Sci. 463 (2078), 385 (2007). doi: 10.1098/rspa.2006.1773

    Article  CAS  Google Scholar 

  8. L. S. Ivlev and Yu. A. Dovgalyuk, Physics of Atomospheric Aerosol Systems (SPb Gos. Univ., St.-Petersburg, 1999) [in Russian].

    Google Scholar 

  9. L. Allegri, F. Bella, G. della Monica, et al., Geophys. Res. Lett. 10, 269 (1983). doi:10.1029/GL010i004p00269

    Article  CAS  Google Scholar 

  10. J. Heinicke, U. Koch, and G. Martinelli, Geophys. Res. Lett. 22, 771 (1995). doi:10.1029/94GL03074

    Article  CAS  Google Scholar 

  11. Ch-Yu. King, W. Zhang, and Bi-Shia King, Pure Appl. Geophys. PAGEOPH 141 (11), 111 (1993). doi:10.1007/BF00876238

    Article  Google Scholar 

  12. G. Igarashi, S. Saeki, N. Takahata, et al., Science 269 (5220), 60 (1995). doi:10.1126/science.269.5220.60

    Article  CAS  Google Scholar 

  13. Y. Omori, H. Nagahama, Y. Kawada, et al., Phys. Chem. Earth, A/B/C 34, 435 (2009). doi:10.1016/ jpce.2008.08.001

    Article  Google Scholar 

  14. S. A. Pulinets, V. A. Alekseev, A. D. Legen’ka, et al., Adv. Space Res. 20, 2173 (1997). doi:10.1016/S02731177(97)00666–2

    Article  CAS  Google Scholar 

  15. H. S. Virk and B. Singh, Geophys. Res. Lett. 21, 737 (1994). doi:10.1029/94GL00310

    Article  CAS  Google Scholar 

  16. F. T. Freund, I. G. Kulahci, G. Cyr, et al., J. Atmos. Sol.-Terr. Phys. 71, 1824 (2009). doi:10.1016/jjastp.2009.07.013

    Article  CAS  Google Scholar 

  17. R. G. Harrison, K. L. Aplin, and M. J. Rycroft, Nat. Hazards Earth Syst. Sci. 14, 773 (2014). doi:10.5194/ nhess-14–773-2014

    Article  Google Scholar 

  18. L. Morozova, Russ. Geol. Geophys. 53, 416 (2012). doi:10.1016/jrgg.2012.02.014

    Article  Google Scholar 

  19. G. Guangmeng and Y. Jie, Nat. Hazards Earth Syst. Sci. 13, 91 (2013). doi:10.5194/nhess-13–91-2013

    Article  Google Scholar 

  20. V. V. Denisenko, M. Ampferer, E. V. Pomozov, et al., J. Atmos. Sol.-Terr. Phys. 102, 341 (2013). doi:10.1016/ jjastp.2013.05.019

    Article  Google Scholar 

  21. M. Parrot, J. Geodynam. 33, 535 (2002). doi:10.1016/S0264–3707(02)0014–5

    Article  Google Scholar 

  22. K. Ryu, E. Lee, J. S. Chae, et al., J. Geophys. Res.: Space Phys. 119, 4767 (2014). doi: 10.1002/ 2013JA01685

    Article  Google Scholar 

  23. K. Ryu, E. Lee, J. S. Chae, et al., J. Geophys. Res.: Space Phys. (2014). doi: 10.1002/2014JA020284

    Google Scholar 

  24. X. Zhang, X. Shen, S. Zhao, et al., J. Asian Earth Sci. 79, 42 (2014). doi:10.1016/jjseaes.2013.08.026

    Article  Google Scholar 

  25. V. M. Chmyrev, N. V. Isaev, S. V. Bilichenko, et al., Phys. Earth Planet. Inter. 57, 110 (1989). doi:10.1016/0031–9201(89)90220–3

    Article  Google Scholar 

  26. M. Gousheva, R. Glavcheva, D. Danov, et al., Adv. Space Res. 37, 660 (2006). doi: 10.1016/jasr.2004.12.050

    Article  Google Scholar 

  27. M. Gousheva, D. Danov, P. Hristov, et al., Nat. Hazards Earth Syst. Sci. 8, 101 (2008). doi: 10.5194/nhess-8101–2008

    Article  Google Scholar 

  28. M. Gousheva, D. Danov, and P. Hristov, Natural Hazards and Earth System Science 9 (1), 3 (2009). doi: 10.5194/nhess-9–3-2009

    Article  Google Scholar 

  29. J. Y. Liu, Y. J. Chuo, S. J. Shan, et al., Ann. Geophys. 22, 1585 (2004). doi: 10.5194/angeo-22–1585-2004

    Article  Google Scholar 

  30. S. Pulinets and D. Davidenko, Adv. Space Res. 53, 709 (2014). doi: 10.1016/jasr.2013.12.035

    Article  Google Scholar 

  31. Yu. V. Romanovskaya and A. A. Namgaladze, Vestn. MGTU 17, 403 (2014).

    Google Scholar 

  32. O. V. Zolotov, A. A. Namgaladze, I. E. Zakharenkova, O. V. Martynenko, and I. I. Shagimuratov, Geomagn. Aeron. 52, 390 (2012).

    Article  CAS  Google Scholar 

  33. A. A. Namgaladze, O. V. Zolotov, and B. E. Prokhorov, Geomagn. Aeron. 53, 522 (2013). doi: 10.7868/ S0016794013030140

    Article  CAS  Google Scholar 

  34. M. I. Karpov, A. A. Namgaladze, and O. V. Zolotov, Russ. J. Phys. Chem. B 7, 594 (2013). doi: 10.7868/S0207401X13090069

    Article  CAS  Google Scholar 

  35. A. A. Namgaladze, M. V. Klimenko, V. V. Klimenko, and I. E. Zakharenkova, Geomagn. Aeron. 49, 252 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Namgaladze.

Additional information

Original Russian Text © A.A. Namgaladze, M.I. Karpov, 2015, published in Khimicheskaya Fizika, 2015, Vol. 34, No. 10, pp. 8–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namgaladze, A.A., Karpov, M.I. Conduction current and extraneous electric current in the global electric circuit. Russ. J. Phys. Chem. B 9, 754–757 (2015). https://doi.org/10.1134/S1990793115050231

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793115050231

Keywords

Navigation