Skip to main content
Log in

A study of the reactivity of silver azide based on calculations of the band properties within the framework of density functional theory

  • Elementary Physicochemical Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Density functional theory methods in the basis of localized orbitals are used to study structural, electronic, vibrational, and thermodynamic properties, as well as the reactivity of the orthorhombic, tetragonal, and monoclinic phases of silver azide. The effects of pressure and temperature are described using the Debye quasi-harmonic model. The reactivity of silver azide is analyzed in terms of the enthalpy and entropy factors and equilibrium constants. It is shown that, for the solid-phase decomposition, a decrease in the volume (increase in pressure) leads to a decrease in the enthalpy, whereas the entropy factor remains virtually unchanged. As a result, at a pressure of 11.6 GPa, the reaction of direct generation of holes becomes feasible and then, above 14.8 GPa, exothermic. The formation of small nuclei of silver dinitride-nitride AgNN2 metastable phase is considered as a possible mechanism of generation of reaction kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. I. A. Millar, Energetic Materials at Extreme Conditions (Springer Theses, Berlin, 2012).

    Book  Google Scholar 

  2. V. M. Lisitsyn, Yu. N. Zhuravlev, V. I. Oleshko, D. G. Fedorov, and V. P. Tsipelev, Khim. Fiz. 25(2), 59 (2006).

    CAS  Google Scholar 

  3. V. G. Kriger and A. V. Kalenskii, Khim. Fiz. 14(4), 152 (1995).

    CAS  Google Scholar 

  4. V. I. Korepanov, V. M. Lisitsyn, V. I. Oleshko, and V. P. Tsipilev, Fiz. Goreniya Vzryva 40(5), 126 (2004).

    CAS  Google Scholar 

  5. B. P. Aduev, E. D. Aluker, and A. G. Krechetov, Fiz. Goreniya Vzryva 40(2), 94 (2004).

    CAS  Google Scholar 

  6. M. I. Eremets, M. Y. Popov, I. A. Trojan, et al., J. Chem. Phys. 120, 10618 (2004).

    Article  CAS  Google Scholar 

  7. M. Cartwright and J. Wilkinson, Propellants, Explosives, Pyrotech. 35, 326 (2010).

    Article  CAS  Google Scholar 

  8. S. A. Medvedev, I. A. Trojan, M. I. Eremets, et al., J. Phys.: Condens. Matter 21, 195404 (2009).

    CAS  Google Scholar 

  9. C. Ji, F. Zhang, D. Hou, et al., J. Phys. Chem. Solids 72, 736 (2011).

    Article  CAS  Google Scholar 

  10. D. Hou, F. Zhang, C. Ji, et al., J. Appl. Phys. 110, 023524 (2011).

    Article  Google Scholar 

  11. G. Zhang and B. L. Weeks, Propellants, Explosives, Pyrotech. 35, 440 (2010).

    Article  CAS  Google Scholar 

  12. C. L. Schmidt, R. Dinnebier, U. Wedig, and M. Jansen, Inorg. Chem. 46, 907 (2007).

    Article  CAS  Google Scholar 

  13. A. R. Oganov, A. O. Lyakhov, and M. Vall, Acc. Chem. Res. 44, 227 (2011).

    Article  CAS  Google Scholar 

  14. W. Zhu and H. Xiao, J. Solid State Chem. 180, 3521 (2007).

    Article  CAS  Google Scholar 

  15. A. B. Gordienko, Y. N. Zhuravlev, and A. S. Poplavnoi, Phys. Status Solidi B 198, 707 (1996).

    Article  CAS  Google Scholar 

  16. W. Zhu and H. Xiao, J. Comput. Chem. 29, 176 (2008).

    Article  CAS  Google Scholar 

  17. W. Zhu, J. Xiao, and H. Xiao, J. Phys. Chem. B 110, 9856 (2006).

    Article  CAS  Google Scholar 

  18. Yu. N. Zhuravlev and V. M. Lisitsyn, Izv. Tomsk. Politekh. Univ. 317, 138 (2010).

    Google Scholar 

  19. V. E. Fortov, Phys. Usp. 50, 333 (2007).

    Article  CAS  Google Scholar 

  20. E. I. Aleksandrov and V. P. Tsipilev, Fiz. Goreniya Vzryva 20(6), 104 (1984).

    CAS  Google Scholar 

  21. V. P. Tsipilev, V. M. Lisitsyn, V. I. Korepanov, V. I. Oleshko, and A. N. Yakovlev, Izv. Tomsk. Politekh. Univ. 306(6), 46 (2003).

    Google Scholar 

  22. V. I. Oleshko, G. Damamme, D. Malys, and V. M. Lisitsyn, Tech. Phys. Lett. 35, 954 (2009).

    Article  CAS  Google Scholar 

  23. M. M. Kuklja, B. P. Aduev, E. D. Aluker, et al., J. Appl. Phys. 89, 4156 (2000).

    Article  Google Scholar 

  24. B. P. Aduev, E. D. Aluker, G. M. Belokurov, and A. G. Krechetov, JETP Lett. 62, 215 (1995).

    Google Scholar 

  25. B. P. Aduev, E. D. Aluker, Yu. A. Zakharov, A. G. Krechetov, and A. V. Chebukin, JETP Lett. 66, 111 (1997).

    Article  Google Scholar 

  26. V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at High Pressures and Temperatures (Nauka, Moscow, 1968; Consultants Bureau, New York, 1971).

    Google Scholar 

  27. F. J. Birch, Geophys. Res. 57, 227 (1952).

    Article  CAS  Google Scholar 

  28. V. E. Fortov and I. V. Lomonosov, Open Plasma Phys. J. 3, 122 (2010).

    CAS  Google Scholar 

  29. S.-N. Luo and T. J. Ahrens, J. Geophys. Res. 108, 2421 (2003).

    Article  Google Scholar 

  30. D. T. Morelli and J. P. Heremans, Appl. Phys. Lett. 81, 5126 (2002).

    Article  CAS  Google Scholar 

  31. N. Koker, Earth Planet. Sci. Lett. 292, 392 (2010).

    Article  Google Scholar 

  32. E. I. Kraus, Vestn. Novg. Univ., Ser. Fiz. 2(2), 65 (2007).

    Google Scholar 

  33. R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL09 User’s Manual (Univ. of Torino, Torino, 2009).

    Google Scholar 

  34. Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  35. www.crystal.initio.it/Basic-Set/ptable.html

  36. G. Guo, Q. Wang, and T. C. W. Mak, J. Chem. Cryst. 29, 561 (1999).

    Article  CAS  Google Scholar 

  37. P. Gray and T. C. Waddington, Proc. R. Soc. London A 241, 110 (1957).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Zhuravlev.

Additional information

Original Russian Text © Yu.N. Zhuravlev, V.M. Lisitsyn, 2014, published in Khimicheskaya Fizika, 2014, Vol. 33, No. 3, pp. 3–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, Y.N., Lisitsyn, V.M. A study of the reactivity of silver azide based on calculations of the band properties within the framework of density functional theory. Russ. J. Phys. Chem. B 8, 117–125 (2014). https://doi.org/10.1134/S1990793114020109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793114020109

Keywords

Navigation