Skip to main content
Log in

α1-Adrenergic Receptors Control the Activity of Sinoatrial Node by Modulating Transmembrane Transport of Chloride Anions

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Norepinephrine (NE), which is released by sympathetic nerve endings, causes an increase in the frequency of spontaneous action potentials in the pacemaker cardiomyocytes of the sinoatrial node (SAN) of the heart. This results in an increase in heart rate (HR). Two types of postsynaptic adrenoreceptors (ARs), α1-AR and β-AR, mediate the effects of NE. The role of α1-AR in the sympathetic control of heart rate and SAN automaticity, as well as the membrane mechanisms involved in α1-AR-mediated pacemaker control, have not yet been elucidated. In this study, we utilized immunofluorescence confocal microscopy to examine the distribution of α1A-AR in the SAN of rats. Additionally, we assessed the expression of α1A-AR mRNA in the SAN tissue using RT-PCR. Furthermore, we investigated the impact of α1-AR stimulation on key functional parameters of the pacemaker, including the corrected sinus node recovery time (SNRT/cSNRT) and the SAN accommodation, using the Langendorff perfused heart technique. We also used optical mapping of the electrical activity of perfused, isolated tissue preparations to study the effect of α1-AR stimulation on the spatiotemporal characteristics of SAN excitation. We tested the effects of chloride transmembrane conductance blockade on alteration of functional parameters and pattern of SAN excitation caused by α1-AR. Fluorescent signals corresponding to α1A-AR have been identified in SAN cardiomyocytes, indicating the presence of α1A-AR at protein level. The expression of α1A-AR in SAN has been also confirmed at the mRNA level. The stimulation of α1-AR affects SAN functioning. Phenylephrine (PHE) utilized as α1A-AR agonist caused a decrease in SNRT/cSNRT, as well as an acceleration of SAN accommodation. These effects were rate dependent and were observed in a high frequency range of pacemaker tissue stimulation. PHE induces changes in the excitation pattern of the SAN. The effects of PHE on functional parameters and SAN excitation pattern are attenuated by Ca2+-dependent chloride channel blocker NPPB but remains unaffected by the protein kinase C inhibitor BIM. Our results suggest that cardiac α1-ARs are important for maintaining function of SAN pacemaker at high heart rates and that α1-AR signalling cascades in the SAN by targeting Ca2+-dependent chloride channels are involved in the α1-adrenergic modulation of the electrophysiological properties of the heart pacemaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Chandler N., Greener I., Tellez J., Inada S., Musa H., Molenaar P., DiFrancesco D., Baruscotti M., Longhi R., Anderson R., Billeter R., Sharma V., Sigg D., Boyett M., Dobrzynski H. 2009. Molecular architecture of the human sinus node insights into the function of the cardiac pacemaker. Circulation. 119 (12), 1562–1575.

    Article  PubMed  Google Scholar 

  2. Lakatta E., Maltsev V., Vinogradova T. 2010. A Coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ. Res. 106 (4), 659–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Keith A., Flack M. 1907. The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J. Anat. Physiol. 41 (3), 172–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. James T. 1961. Anatomy of the human sinus node. Anat. Rec. 141 (2), 109–139.

    Article  CAS  PubMed  Google Scholar 

  5. Dobrzynski H., Li J., Tellez J., Greener I., Nikolski V., Wright S., Parson S., Jones S., Lancaster M., Yamamoto M., Honjo H., Takagishi Y., Kodama I., Efimov I., Billeter R., Boyett M. 2005. Computer three-dimensional reconstruction of the sinoatrial node. Circulation. 111 (7), 846–854.

    Article  CAS  PubMed  Google Scholar 

  6. Boyett M., Honjo H., Kodama I. 2000. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc. Res. 47 (4), 658–687.

    Article  CAS  PubMed  Google Scholar 

  7. Fahrenbach J., Mejia-Alvarez R., Banach K. 2007. The relevance of non-excitable cells for cardiac pacemaker function. J. Physiol. 585 (2), 565–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuzmin V.S., Kamensky A.A. 2021. Molecular mechanisms of ontogenesis of the pacemaker of the heart in vertebrates. Vestnik MGU. Serija 16. Biologija (Rus.). 76 (4), 183–201.

    Google Scholar 

  9. Csepe T., Kalyanasundaram A., Hansen B., Zhao J., Fedorov V. 2015. Fibrosis: A structural modulator of sinoatrial node physiology and dysfunction. Front. Physiol. 6, 1–9.

    Article  Google Scholar 

  10. Csepe T., Zhao J., Hansen B., Li N., Sul L., Lim P., Wang Y., Simonetti O., Kilic A., Mohler P., Janssen P., Fedorov V. 2016. Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways. Prog. Biophys. Mol. Biol. 120 (1–3), 164–178.

    Article  PubMed  Google Scholar 

  11. Kamkin A., Kiseleva I., Wagner K., Pylaev A., Leiterer K., Theres H., Scholz H., Günther J., Isenberg G., 2002. A possible role for atrial fibroblasts in postinfarction bradycardia. Am. J. Physiol. Heart. Circ. Physiol. 282 (3), H842–H849.

    Article  CAS  PubMed  Google Scholar 

  12. Dobrzynski H., Boyett M., Anderson R. 2007. New insights into pacemaker activity: Promoting understanding of sick sinus syndrome. Circulation. 115 (14), 1921–1932.

    Article  PubMed  Google Scholar 

  13. Fedorov V., Schuessler R., Hemphill M., Ambrosi C., Chang R., Voloshina A., Brown K., Hucker W., Efimov I. 2009. Structural and functional evidence for discrete exit pathways that connect the canine sinoatrial node and atria. Circ. Res. 104 (7), 915–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fedorov V., Glukhov A., Chang R. 2012. Conduction barriers and pathways of the sinoatrial pacemaker complex: Their role in normal rhythm and atrial arrhythmias. Am. J. Physiol. Heart. Circ. Physiol. 302 (9), 1773–1783.

    Article  Google Scholar 

  15. MacDonald E., Rose R., Quinn T. 2020. Neurohumoral control of sinoatrial node activity and heart rate: Insight from experimental models and findings from humans. Front. Physiol. 11, 1–26.

    Article  Google Scholar 

  16. Saito K., Suetsugu T., Oku Y., Kuroda A., Tanaka H. 1994. α1-Adrenoceptors in the conduction system of rat hearts. Br. J. Pharmacol. 111 (2), 465–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Michel M., Hanft G., Groß G. 1994. Functional studies on α1-adrenoceptor subtypes mediating inotropic effects in rat right ventricle. Br. J. Pharmacol. 111 (2), 539–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korotaeva Yu.V., Tsikin V.I. 2015. Alpha2-adrenoreceptors of the myocardium. Izvestia Komi nauchnogo centra URO RAN. (Rus.). 2 (22), 57–64.

  19. Motiejunaite J., Amar L., Vidal-Petiot E. 2021. Adrenergic receptors and cardiovascular effects of catecholamines. Ann. Endocrinol. (Paris). 82 (3–4), 193–197.

    Article  PubMed  Google Scholar 

  20. Saitoh H., Nomura A., Osaka M., Sasabe N., Atarashi H., Hayakawa H. 1995. Developmental changes of α1-adrenergic chronotropic action on human sinus node. Am. J. Cardiol. 76 (1–2), 89–91.

    Article  CAS  PubMed  Google Scholar 

  21. Posner P., Baney R., Prestwich K. 1984. The electrophysiological actions of phenylephrine on the rabbit S-A node. Res. Commun. Chem. Pathol. Pharmacol. 44 (2), 315–318.

    CAS  PubMed  Google Scholar 

  22. Hewett, K., Rosen M. 1985. Developmental changes in the rabbit sinus node action potential and its response to adrenergic agonists. J. Pharmacol. Exp. Ther. 235 (2), 308–312.

    CAS  PubMed  Google Scholar 

  23. Hashimoto K., Chiba S., Hashimoto K. 1971. Negative chronotropic response to phenylephrine of the canine S-A node. Tohoku J. Exp. Med. 105 (1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  24. Khabibrakhmanov I., Ziyatdinova N., Khisamieva L., Krulova A., Zefirov T. 2019. Age-related features influence of alpha(1)-adrenoceptor stimulation on isolated rat heart. Biosci. Biotechnol. Res. Commun. 12 (5), 351–354.

    Google Scholar 

  25. Khabibrakhmanov I., Ziyatdinova N., Kuptsova A., Zefirov T. 2018. Effect of α1A-adrenergic receptors stimulation to the isolated rat hearts. Res. J. Pharm., Biol. Chem. Sci. 9 (525), 525–529.

    CAS  Google Scholar 

  26. Mommersteeg M., Domínguez J., Wiese C., Norden J., De Gier-De Vries C., Burch J., Kispert A., Brown N., Moorman A., Christoffels V. 2010. The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc. Res. 87 (1), 92–101.

    Article  CAS  PubMed  Google Scholar 

  27. Ivanova A., Filatova T., Abramochkin D., Atkinson A., Dobrzynski H., Kokaeva Z., Merzlyak E., Pustovit K., Kuzmin V. 2021. Attenuation of inward rectifier potassium current contributes to the α1-adrenergic receptor-induced proarrhythmicity in the caval vein myocardium. Acta Physiol. 231 (4), 1–17.

    Article  Google Scholar 

  28. Ivanova A., Kuzmin V. 2018. Inhibition of inward rectifier potassium currents by chloroquine causes significant electrophysiological changes in the rat thoracic veins myocardium. Uchenye zapiski Kazanskogo universiteta, Seria Estestv. nauki (Rus.). 160 (4), 645–653. https://kpfu.ru/uz-rus/ns/arhiv/inhibition-of-inward-rectifier-potassium-currents.html

  29. Ivanova A., Kuzmin V. 2018. Electrophysiological characteristics of the rat azygos vein under electrical pacing and adrenergic stimulation. J. Physiol. Sci. 68 (5), 617–628.

    Article  PubMed  Google Scholar 

  30. Kuzmin V., Ivanova A., Potekhina V., Samoilova D., Ushenin K., Shvetsova A., Petrov A. 2021. The susceptibility of the rat pulmonary and caval vein myocardium to the catecholamine-induced ectopy changes oppositely in postnatal development. J. Physiol. 599 (11), 2803–2821.

    Article  CAS  PubMed  Google Scholar 

  31. Pustovit K., Samoilova D., Abramochkin D., Filatova T., Kuzmin V. 2022. α1-adrenergic receptors accompanied by GATA4 expression are related to proarrhythmic conduction and automaticity in rat interatrial septum. J. Physiol. Biochem. 78 (4), 793–805.

    Article  CAS  PubMed  Google Scholar 

  32. Gould D., Hill C. 1996. α-Adrenoceptor activation of a chloride conductance in rat iris arterioles. Am. J. Physiol. Heart. Circ. Physiol. 271 (40), 2469–2476.

    Article  Google Scholar 

  33. Lamb F., Kooy N., Lewis S. 2000. Role of Cl-channels in α-adrenoceptor-mediated vasoconstriction in the anesthetized rat. Eur. J. Pharmacol. 401 (3), 403–412.

    Article  CAS  PubMed  Google Scholar 

  34. Duan D. 2013. Phenomics of cardiac chloride channels. Compr. Physiol. 3 (2), 667–692.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ramteke V., Tandan S., Kumar D., Aruna Devi R., Shukla M., Ravi Prakash V. 2009. Increased hyperalgesia by 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), a chloride channel blocker in crush injury-induced neuropathic pain in rats. Pharmacol. Biochem. Behav. 91 (3), 417–422.

    Article  CAS  PubMed  Google Scholar 

  36. Glukhov A., Fedorov V., Anderson M., Mohler P., Efimov I. 2010. Functional anatomy of the murine sinus node: High-resolution optical mapping of ankyrin-B heterozygous mice. Am. J. Physiol., Hear. Circ. Physiol. 299 (2), 482–491.

    Article  Google Scholar 

  37. Abramochkin D., Kuzmin V., Sukhova G., Rosenshtraukh L. 2009. Modulation of rabbit sinoatrial node activation sequence by acetylcholine and isoproterenol investigated with optical mapping technique. Acta Physiol. 196 (4), 385–394.

    Article  CAS  Google Scholar 

  38. Lang D., Petrov V., Lou Q., Osipov G., Efimov I. 2011. Spatiotemporal control of HRin a rabbit heart. J. Electrocardiol. 44 (6), 626–634.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chakraborti S., Chakraborti T., Shaw G. 2000. β-Adrenergic mechanisms in cardiac diseases: A perspective. Cell Signal. 12 (8), 499–513.

    Article  CAS  PubMed  Google Scholar 

  40. Ivanova A., Filatova T., Abramochkin D., Atkinson A., Dobrzynski H., Kokaeva Z., Merzlyak E., Pustovit K., Kuzmin V. 2021. Attenuation of inward rectifier potassium current contributes to the α1-adrenergic receptor-induced proarrhythmicity in the caval vein myocardium. Acta Physiol. 231 (4), 1–17.

    Article  Google Scholar 

  41. Wu S., O’Connell T. 2015. Nuclear compartmentalization of α1-adrenergic receptor signaling in adult cardiac myocytes. J. Cardiovasc. Pharmacol. 65 (2), 91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roth N., Campbell P., Caron M., Lefkowitz R., Lohse M. 1991. Comparative rates of desensitization of β-adrenergic receptors by the β-adrenergic receptor kinase and the cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA. 88 (14), 6201–6204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mahmood A., Ahmed K., Zhang Y. 2022. β-Adrenergic receptor desensitization/down-regulation in heart failure: A friend or foe? Front. Cardiovasc. Med. 9 (July), 1–5.

    Article  Google Scholar 

  44. Motiejunaite J., Amar L., Vidal-Petiot E. 2021. Adrenergic receptors and cardiovascular effects of catecholamines. Ann. Endocrinol. (Paris). 82 (3–4), 193–197.

    Article  PubMed  Google Scholar 

  45. Berg J., Yang H., Jan L. 2012. Ca2+-activated Cl-channels at a glance. J. Cell Sci. 125 (6), 1367–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hume J., Duan D., Collier M., Yamazaki J., Horowitz B. 2000. Anion transport in heart. Physiol. Rev. 80 (1), 31–81.

    Article  CAS  PubMed  Google Scholar 

  47. Burashnikov A., Antzelevitch C. 1999. Differences in the electrophysiologic response of four canine ventricular cell types to α1-adrenergic agonists. Cardiovasc. Res. 43 (4), 901–908.

    Article  CAS  PubMed  Google Scholar 

  48. Duan D. 2009. Phenomics of cardiac chloride channels: The systematic study of chloride channel function in the heart. J. Physiol. 587 (10), 2163–2177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tapilina S., Abramochkin D., Sukhova G., Rosenshtraukh L. 2010. Cholinergic inexcitability in the sinoatrial node of the mouse. Dokl. Biol. Sci. 435 (1), 393–397.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 22-15-00189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Voronina.

Ethics declarations

CONFLICT OF INTEREST

The authors declare the absence of conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All experimental procedures were carried out in accordance with European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (Council of Europe No. 123, Strasbourg 1985) and approved by the Ethics Committee of the NMRCC Institute of Experimental Cardiology.

Additional information

Translated by E. Puchkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronina, Y.A., Fedorov, A.V., Chelombitko, M.A. et al. α1-Adrenergic Receptors Control the Activity of Sinoatrial Node by Modulating Transmembrane Transport of Chloride Anions. Biochem. Moscow Suppl. Ser. A 17 (Suppl 1), S39–S50 (2023). https://doi.org/10.1134/S1990747823070061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747823070061

Keywords:

Navigation