Skip to main content
Log in

Interaction of Mesenchymal Stromal Cells with 5XFAD Mouse Hippocampal Cells in Primary Culture Depending on Cocultivation Method

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract—

We studied the mutual influence of multipotent mesenchymal stromal cells (MMSC) isolated from human umbilical cord Wharton’s jelly and primary culture of hippocampal cell from transgenic (Tg) 5XFAD mice, a model of familial Alzheimer’s disease (AD). Antibodies to human nuclear antigen were used to identify MMSCs in “chimeric culture”; the cells belonging to neurons or astrocytes were determined by the presence of positive immunoreactivity to marker proteins MAP2 and GFAP. It was shown that the result of the interaction depends on both the cocultivation method and the age of the culture. In indirect (non-contact) cocultivation, the aggressive environment of the transgenic culture affected the survival rate and impaired the adhesive properties of the MMSCs. Pretreatment of these cells with stress proteins YB-1 and HSP70, which possess neuroprotective properties, increased the resistance of MMSCs. In young culture during contact cocultivation, the MMSCs play the role of specific strands that promote grouping of hippocampal cells of transgenic mice and formation of neurospheres. In old transgenic cultures, irrespective of the cocultivation method, the MMSCs differentiated into astrocytes, but during prolonged direct cocultivation, a part of MMSCs became immunopositive to the neuronal marker MAP2. The work shows that the interaction between the MMSCs and the hippocampal cell culture can be carried out with the participation of gap junctions as well as due to the formation of nanotubes. The results obtained indicate the presence of a complex relationship between donor MMSCs and recipient cells, which must be taken into account when introducing cell therapy into the practice of treating AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Sivandzade F., Cucullo L. 2021. Regenerative stem cell therapy for neurodegenerative diseases: An overview. Int. J. Mol. Sci. 22 (4), e2153.

    Article  Google Scholar 

  2. Carp D.M., Liang Y. 2022. Universal or personalized mesenchymal stem cell therapies: Impact of age, sex, and biological source. Cells. 11 (13), e2077.

    Article  Google Scholar 

  3. Goncalves K., Przyborski S. 2018. The utility of stem cells for neural regeneration. Brain Neurosci. Adv. 2 (2), e239821281881807

    Article  Google Scholar 

  4. Behrstock S., Ebert A.D., Klein S., Schmitt M., Moore J.M., Svendsen C.N. 2008. Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF. Cell Transplant. 17 (7), 753–762.

    Article  PubMed  Google Scholar 

  5. Blurton-Jones M., Kitazawa M., Martinez-Coria H., Castello N.A., Müller F.J., Loring J.F., Yamasaki T.R., Poon W.W., Green K.N., LaFerla F.M. 2009. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci. USA. 106 (32), 13594–13599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chaplygina A.V., Zhdanova D.Y., Kovalev V.I., Poltavtseva R.A., Medvinskaya N.I., Bobkova N.V. 2022. Cell therapy as a way to correct impaired neurogenesis in the adult brain in a model of Alzheimer’s disease. J. Evol. Biochem. Physiol. 58 (1), 117–137.

    Article  CAS  Google Scholar 

  7. Kim S., Chang K.A., Kim J.A., Park H.G., Ra J.C., Kim H.S., Suh Y.H. 2012. The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer’s disease mice. PLoS One. 7 (9), e45757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bruno S., Kholia S., Deregibus M.C., Camussi G. 2019. The role of extracellular vesicles as paracrine effectors in stem cell-based therapies. Adv. Exp. Med. Biol. 1201, 175–193.

    Article  CAS  PubMed  Google Scholar 

  9. Yin K., Wang S., Zhao R.C. 2019. Exosomes from mesenchymal stem/stromal cells: A new therapeutic paradigm. Biomark. Res. 7, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Joyce N., Annett G., Wirthlin L., Olson S., Bauer G., Nolta J.A. 2010. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen. Med. 5 (6), 933–946.

    Article  PubMed  Google Scholar 

  11. Xin D., Li T., Chu X., Ke H., Liu D., Wang Z. 2021. MSCs-extracellular vesicles attenuated neuroinflammation, synapse damage and microglial phagocytosis after hypoxia-ischemia injury by preventing osteopontin expression. Pharmacol. Res. 164, e105322.

    Article  Google Scholar 

  12. Nair S., Rocha-Ferreira E., Fleiss B., Nijboer C.H., Gressens P, Mallard C, Hagberg H. 2021. Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. J. Neurochem. 158 (1), 59–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim D.H., Lee D., Lim H., Choi S.J., Oh W., Yang Y.S., Chang J.H., Jeon H.B. 2018. Effect of growth differentiation factor-15 secreted by human umbilical cord blood-derived mesenchymal stem cells on amyloid beta levels in in vitro and in vivo models of Alzheimer’s disease. Biochem. Biophys. Res. Commun. 504 (4), 933–940.

    Article  CAS  PubMed  Google Scholar 

  14. Spees J.L., Lee R.H., Gregory C.A. 2016. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther. 7 (1), 125.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ramkisoensing A.A., Pijnappels D.A., Swildens J., Goumans M.J., Fibbe W.E., Schalij M.J., de Vries A.A.F., Atsma D.E. 2012. Gap junctional coupling with cardiomyocytes is necessary but not sufficient for cardiomyogenic differentiation of cocultured human mesenchymal stem cells. Stem Cells. 30 (6), 1236–1245.

    Article  CAS  PubMed  Google Scholar 

  16. Matuskova M., Hlubinova K., Pastorakova A., Hunakova L., Altanerova V., Altaner C., Kucerova L. 2010. HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett. 290 (1), 58–67.

    Article  CAS  PubMed  Google Scholar 

  17. Kikuchi-Taura A., Okinaka Y., Saino O., Takeuchi Y., Ogawa Y., Kimura T., Gul S., Claussen C., Boltze J., Taguchi A. 2021. Gap junction-mediated cell-cell interaction between transplanted mesenchymal stem cells and vascular endothelium in stroke. Stem Cells. 39 (7), 904–912.

    Article  CAS  PubMed  Google Scholar 

  18. Bobkova N.V., Poltavtseva R.A., Samokhin A.N., Sukhikh G.T. 2013. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration. Bull. Exp. Biol. Med. 156 (1), 119–121.

    Article  CAS  PubMed  Google Scholar 

  19. Poltavtseva R.A., Samokhin A.N., Bobkova N.V., Alexandrova M.A., Sukhikh G.T. 2020. Effect of transplantation of neural stem and progenitor cells on memory in animals with Alzheimer’s type neurodegeneration. Bull. Exp. Biol. Med. 168 (4), 589–596.

    Article  CAS  PubMed  Google Scholar 

  20. Skok M. 2021. Mesenchymal stem cells as a potential therapeutic tool to cure cognitive impairment caused by neuroinflammation. World J. Stem Cells. 13 (8),1072–1083.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yun H.M., Kim H.S., Park K.R., Shin J.M., Kang A.R., il Lee K., Song S., Kim Y.B., Han S.B., Chung H.M., Hong J.T. 2013. Placenta-derived mesenchymal stem cells improve memory dysfunction in an Aβ1-42-infused mouse model of Alzheimer’s disease. Cell Death Dis. 4 (12), e958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bagheri-Mohammadi S. 2021. Microglia in Alzheimer’s disease: The role of stem cell-microglia interaction in brain homeostasis. Neurochem. Res. 46 (2), 141–148.

    Article  CAS  PubMed  Google Scholar 

  23. Qin C., Lu Y., Wang K., Bai L., Shi G., Huang Y., Li Y. 2020. Transplantation of bone marrow mesenchymal stem cells improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer’s disease: A meta-analytic review on potential mechanisms. Transl. Neurodegener. 9 (1), 20.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang H., Xie Z., Wei L., Yang H., Yang S., Zhu Z., Wang P., Zhao C., Bi J. 2013. Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AβPP/PS1 transgenic mouse model. Stem Cell Res. Ther. 4 (4), 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hernández A.E., García E. 2021. Mesenchymal stem cell therapy for Alzheimer’s disease. Stem Cells Int. 2021, e7834421.

    Article  Google Scholar 

  26. de Godoy M.A., Saraiva L.M., de Carvalho L.R.P., Vasconcelos-Dos-Santos A., Beiral H.J.V., Ramos A.B., Silva LR.P., Leal R.B., Monteiro V.H.S., Braga C.V., de Araujo-Silva C.A., Sinis L.C., Bodart-Santos V., Kasai-Brunswick T.H., Alcantara C.L., Lima A.P.C.A., da Cunha-E Silva N.L., Galina A., Vieyra A., De Felice F.G., Mendez-Otero R., Ferreira S.T. 2018. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. J. Biol. Chem. 293 (6), 1957–1975.

    Article  CAS  PubMed  Google Scholar 

  27. Bobkova N.V., Lyabin D.N., Medvinskaya N.I., Samokhin A.N., Nekrasov P.V., Nesterova I.V., Aleksandrova I.Y., Tatarnikova O.G., Bobylev A.G., Vikhlyantsev I.M., Kukharsky M.S., Ustyugov A.A., Polyakov D.N., Eliseeva I.A., Kretov D.A., Guryanov S.G., Ovchinnikov L.P. 2015. The Y-box binding protein 1 suppresses Alzheimer’s disease progression in two animal models. PLoS One. 10 (9), e0138867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Evgenev M., Bobkova N., Krasnov G., Garbuz D., Funikov S., Kudryavtseva A., Kulikov A., Samokhin A., Maltsev A., Nesterova I. 2019. The effect of human HSP70 administration on a mouse model of Alzheimer’s disease strongly depends on transgenicity and age. J. Alzheimer’s Dis. 67, 1391–1404.

    Article  CAS  Google Scholar 

  29. Miao X., Wu Y., Wang Y., Zhu X., Yin H., He Y., Li C., Liu Y., Lu X., Chen Y., Shen R., Xu X., He S. 2016. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma. Exp. Cell Res. 346 (2), 157–166.

    Article  CAS  PubMed  Google Scholar 

  30. Xie F., Zhan R., Yan L-C., Gong J-B., Zhao Y., Ma J., Qian L-J. 2016. Diet-induced elevation of circulating HSP70 may trigger cell adhesion and promote the development of atherosclerosis in rats. Cell Stress Chaperones. 21 (5), 907–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Galipeau J., Krampera M., Barrett J., Dazzi F., Deans R.J., DeBruijn J., Dominici M., Fibbe W.E., Gee A.P., Gimble J.M., Hematti P., Koh M.B., LeBlanc K., Martin I., McNiece I.K., Mendicino M., Oh S., Ortiz L., Phinney D.G., Planat V., Shi Y., Stroncek D.F., Viswanathan S., Weiss D.J., Sensebe L. 2016. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy. 18 (2), 151–159.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y., Su J., Fu D., Wang Y., Chen Y., Chen R., Qin G., Zuo J., Yue D. 2018. The role of YB1 in renal cell carcinoma cell adhesion. Int. J. Med. Sci. 15, 1304–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kollar K., Cook M.M., Atkinson K., Brooke G. 2009. Molecular mechanisms involved in mesenchymal stem cell migration to the site of acute myocardial infarction. Int. J. Cell Biol. 2009, e904682.

    Article  Google Scholar 

  34. Tang B., Li X., Liu Y., Chen X., Li X., Chu Y., Zhu H., Liu W., Xu F., Zhou F., Zhang Y. 2018. The therapeutic effect of ICAM-1-overexpressing mesenchymal stem cells on acute Graft-Versus-Host disease. Cell. Physiol. Biochem. 46 (6), 2624–2635.https://doi.org/10.1159/000489689

    Article  CAS  PubMed  Google Scholar 

  35. Tatarnikova O.G., Orlov M.A., Bobkova N.V. 2015. Beta-amyloid and tau-protein: Structure, interaction, and prion-like properties. Biochemistry. (Mosc.). 80 (13), 1800–1819.

    Article  CAS  PubMed  Google Scholar 

  36. Sukach A.N., Ivanov E.N. 2007. Formation of spherical colonies as a property of stem cells. Cell Tissue Biol. 1 (6), 476–481.

    Article  Google Scholar 

  37. Onfelt B., Nedvetzki S., Benninger R.K., Purbhoo M.A., Sowinski S., Hume A.N., Seabra M.C., Neil M.A., French P.M., Davis D.M. 2006. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 177 (12), 8476–8483.

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 18-15-00392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chaplygina.

Ethics declarations

The authors declare no conflict of interest.

This article does not contain any human studies performed by any of the authors. The MMSCs were obtained by the staff of the National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Russian Ministry of Health, which has special permission for this type of work, under a contract concluded with this organization.

The study was conducted in strict accordance with the “Rules for Research with Experimental Animals” (Order No. 755 of the Russian Ministry of Health of August 12, 1997). All procedures on mice were approved by Biosafety and Bioethics Commission (Institute of Cell Biophysics – Pushchino Scientific Center for Biological Research of Russian Academy of Sciences, permission no. 3 dated June 12, 2020) in accordance with Directive 2010/63/EC of European Parliament.

Additional information

Translated by A. Chaplygina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaplygina, A.V., Zhdanova, D.Y., Kovalev, V.I. et al. Interaction of Mesenchymal Stromal Cells with 5XFAD Mouse Hippocampal Cells in Primary Culture Depending on Cocultivation Method. Biochem. Moscow Suppl. Ser. A 17, 156–168 (2023). https://doi.org/10.1134/S1990747823030042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747823030042

Keywords:

Navigation