Skip to main content
Log in

Lateral Interaction of Cylindrical Transmembrane Peptides in a One-Dimensional Approximation

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Various membrane inclusions can induce deformations of lipid bilayer membranes. The characteristic length of deformation propagation along the membrane is about several nanometers. Overlapping of deformations induced by different membrane inclusions leads to their effective lateral interaction. The interaction energy can be calculated within the framework of an adequate theory of elasticity. However, in practice, such a calculation can be carried out in an analytical form only for effectively one-dimensional systems, for example, those with translational or rotational symmetry. In the general case of systems with low symmetry, the problem cannot be solved analytically. We theoretically considered the interaction of two cylindrical transmembrane peptides mediated by membrane deformations. The interaction energies were obtained by numerical minimization of the elastic energy functional. In addition, we calculated the interaction energies in a one-dimensional approximation, assuming that the system possesses the translational symmetry. It was shown that the one-dimensional approximation quite well reproduces the results of exact numerical calculations in lipid bilayers of various thicknesses and rigidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kozlovsky Y., Kozlov M.M. 2003. Membrane fission: Model for intermediate structures. Biophys. J. 85, 85–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martens S., Kozlov M.M., McMahon H.T. 2007. How synaptotagmin promotes membrane fusion. Science 316, 1205–1208.

    Article  CAS  PubMed  Google Scholar 

  3. Chernomordik L., Kozlov M.M., Zimmerberg J. 1995. Lipids in biological membrane fusion. J. Membr. Biol. 146, 1–14.

    Article  CAS  PubMed  Google Scholar 

  4. Kozlovsky Y., Kozlov M.M. 2002. Stalk model of membrane fusion: Solution of energy crisis. Biophys. J. 82, 882–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pannuzzo M., McDargh Z.A., Deserno M. 2018. The role of scaffold reshaping and disassembly in dynamin driven membrane fission. Elife. 7, e39441.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kozlovsky Y., Chernomordik L.V., Kozlov M.M. 2002. Lipid intermediates in membrane fusion: Formation, structure, and decay of hemifusion diaphragm. Biophys. J. 83, 2634–2651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Helfrich W. 1973. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. C. 28, 693–703.

    Article  CAS  PubMed  Google Scholar 

  8. Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E. 3, 323–335.

    Article  CAS  Google Scholar 

  9. Terzi M.M., Deserno M. 2017. Novel tilt-curvature coupling in lipid membranes. J. Chem. Phys. 147, 084702.

    Article  PubMed  Google Scholar 

  10. Pinigin K.V., Kuzmin P.I., Akimov S.A., Galim-zyanov T.R. 2020. Additional contributions to elastic energy of lipid membranes: Tilt-curvature coupling and curvature gradient. Phys. Rev. E. 102, 042406.

    Article  CAS  PubMed  Google Scholar 

  11. Kondrashov O.V., Galimzyanov T.R., Pavlov K.V., Kotova E.A., Antonenko Y.N., Akimov S.A. 2018. Membrane elastic deformations modulate gramicidin A transbilayer dimerization and lateral clustering. Biophys. J. 115, 478–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kondrashov O.V., Galimzyanov T.R., Jiménez-Munguía I., Batishchev O.V., Akimov S.A. 2019. Membrane-mediated interaction of amphipathic peptides can be described by a one-dimensional approach. Phys. Rev. E. 99, 022401.

    Article  CAS  PubMed  Google Scholar 

  13. Perrin Jr. B.S., Fu R., Cotten M.L., Pastor R.W. 2016. Simulations of membrane-disrupting peptides II: AMP piscidin 1 favors surface defects over pores. Biophys. J. 111, 1258–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen C.H., Wiedman G., Khan A., Ulmschneider M.B. 2014. Absorption and folding of melittin onto lipid bilayer membranes via unbiased atomic detail microsecond molecular dynamics simulation. Biochim. Biophys. Acta. 1838, 2243–2249.

    Article  CAS  PubMed  Google Scholar 

  15. Bories F., Constantin D., Galatola P., Fournier J.B. 2018. Coupling between inclusions and membranes at the nanoscale. Phys. Rev. Lett. 120, 128104.

    Article  CAS  PubMed  Google Scholar 

  16. Lin X., Gorfe A.A., Levental I. 2018. Protein partitioning into ordered membrane domains: Insights from simulations. Biophys. J. 114, 1936–1944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park S., Yeom M.S., Andersen O.S., Pastor R.W., Im W. 2019. Quantitative characterization of protein–lipid interactions by free energy simulation between binary bilayers. J. Chem. Theor. Comput. 15, 6491–6503.

    Article  CAS  Google Scholar 

  18. Molotkovsky R.J., Akimov S.A. 2009. Calculation of the line tension in various models of the lipid bilayer pore edge. Biol. Membrany (Rus.). 26, 149–158.

    Google Scholar 

  19. Karpunin D.V., Akimov S.A., Frolov V.A. 2005. Pore formation in lipid membranes containing lysolipids and cholesterol. Biol. Membrany (Rus.). 22, 429–432.

    CAS  Google Scholar 

  20. Israelachvili J. 2011. Intermolecular and Surface Forces. New York: Academic Press, ISBN 9 780 123 919 274.

    Google Scholar 

  21. Nagle J.F., Wilkinson D.A. 1978. Lecithin bilayers. Density measurement and molecular interactions. Biophys. J. 23, 159–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kondrashov O.V., Akimov S.A. 2022. Regulation of antimicrobial peptide activity via tuning deformation fields by membrane-deforming inclusions. Int. J. Mol. Sci. 23, 326.

    Article  CAS  Google Scholar 

  23. Rawicz W., Olbrich K.C., McIntosh T., Needham D., Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu M., de Jong D.H., Marrink S.J., Deserno M. 2013. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: A comparative study using the MARTINI model. Faraday Discuss. 161, 365–382.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 22-24-00834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Akimov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by S. Akimov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrashov, O.V., Akimov, S.A. Lateral Interaction of Cylindrical Transmembrane Peptides in a One-Dimensional Approximation. Biochem. Moscow Suppl. Ser. A 16, 127–134 (2022). https://doi.org/10.1134/S1990747822030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747822030060

Keywords:

Navigation