Skip to main content
Log in

Regulation of the Structural Stability of Erythrocytes by Hydrogen Peroxide: Mathematical Model and Experiment

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

In this study, the regulatory mechanisms induced by extracellular hydrogen peroxide were analyzed on the basis of a mathematical model that considers the key stages of the formation of methemoglobin and ferrylhemoglobin, as well as their binding to the erythrocyte membrane. Numerical modeling has shown that reversible binding of methemoglobin to the membrane is an adaptive mechanism aimed at stabilizing the lipid bilayer of the membrane. On the other hand, an increase in the concentration of ferrylhemoglobin and its binding to the membrane leads to an increase in pathophysiological processes that reduce the structural stability of cells. The quantity of methemoglobins and ferrylhemoglobins formed depends on the concentration of extracellular hydrogen peroxide and exposition time, the number of cells in the sample, the state of the antioxidant system of erythrocytes, the metabolic activity of cells and external metabolic conditions. Based on numerical modeling, optimal conditions (oxidant concentration and exposition time) have been determined, under which the activation of adaptive processes occurs. Experiments with erythrocyte hemolysis in vitro have shown that hydrogen peroxide at concentrations of 10–200 μM causes an increase in the structural stability of the membrane and a decrease in the proportion of hemolyzed erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Martinovich G.G., Cherenkevich S.N. 2008. Okislitelno-vosstanovitelnie processi v kletkah (Redox processes in cells). Minsk: BSU.

  2. Sies H., Jones D.P. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21 (3), 1–21.

    Article  Google Scholar 

  3. Ghezzi P., Jaquet V., Marcucci F., Schmidt H. 2017. The oxidative stress theory of disease: Levels of evidence and epistemological aspects. Br. J. Pharmacol. 174, 1784–1796.

    Article  CAS  Google Scholar 

  4. Ursini F., Maiorino M., Forman H.J. 2016. Redox homeostasis: The golden mean of healthy living. Redox Biology. 8, 205–215.

    Article  CAS  Google Scholar 

  5. Lim J.B., Huang B.K., Deen W.M., Sikes H.D. 2015. Analysis of the lifetime and spatial localization of hydrogen peroxide generated in the cytosol using a reduced kinetic model. Free Radic. Biol. Med. 89, 47–53.

    Article  CAS  Google Scholar 

  6. Johnson R.M., Goyette G.Jr., Ravindranath Y., Ho Y. 2005. Hemoglobin autoxidation and regulation of endogenous H2O2 levels in erythrocytes. Free Radic. Biol. Med. 39, 1407–1417.

    Article  CAS  Google Scholar 

  7. Orrico F., Möller M.N., Cassina A., Denicola A., Thomson L. 2018. Kinetic and stoichiometric constraints determine the pathway of H2O2 consumption by red blood cells. Free Radic. Biol. Med. 121, 231–239.

    Article  CAS  Google Scholar 

  8. Merry T.L., Ristow M. 2016. Mitohormesis in exercise training. Free Radic. Biol. Med. 98, 123–130. https://doi.org/10.1016/j.freeradbiomed.2015.11.032

    Article  CAS  PubMed  Google Scholar 

  9. Kosmachevskaya O.V., Nasybullina E.I., Blindar V.N., Topunov A.F. 2019. Binding of erythrocyte hemoglobin to the membrane as a way of implementing the signal-regulatory function (review). Applied Biochem. Microbiol. 55 (2), 83–98.

    Article  CAS  Google Scholar 

  10. Zenkov N.K., Chechushkov A.V., Kozhin P.M., Kandalintseva N.V., Martinovich G.G., Menshchikova E.B. 2017. Mazes of Nrf2 Regulation. Biochemistry (Moscow). 82 (5), 556–564.

    Article  CAS  Google Scholar 

  11. Cuadrado A., Rojo A., Wells G., Hayes J., Cousin S., Rumsey W., Attucks O., Franklin S., Levonen A., Kensler T., Dinkova-Kostova A. 2019. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317.

    Article  CAS  Google Scholar 

  12. Arashiki N., Kimata N., Manno S., Mohandas N., Takakuwa Y. 2013. Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: Mechanistic insights into human erythrocyte senescence. Biochemistry. 52, 5760−5769.

    Article  CAS  Google Scholar 

  13. Kuhn V., Diederich L., Stevenson Keller IV T.C., Kramer C.M., Lückstädt W., Panknin C., Suvorava T., Isakson B.E., Kelm M., Cortese-Krott M.M. 2017. Red blood cell function and dysfunction: Redox regulation, nitric oxide metabolism, anemia. Antioxid. Redox Signal. 26 (13), 718–742.

    Article  CAS  Google Scholar 

  14. Forman H.J., Bernardo A., Davies K.J.A. 2016. What is the concentration of hydrogen peroxide in blood and plasma? Arch. Biochem. Biophys. 603, 48–53.

    Article  CAS  Google Scholar 

  15. Roy S., Khanna S., Nallu K., Hunt T.K., Sen C.K. 2006. Dermal wound healing is subject to redox control. Mol. Ther. 13 (1), 211–220.

    Article  CAS  Google Scholar 

  16. Niethammer P., Grabher C., Look A.T., Mitchison T.J. 2009. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 459 (7249), 996–999.

    Article  CAS  Google Scholar 

  17. Zavodnik I.B., Lapshina E.A., Zavodnik L.B., Soszynski M., Bartosz G., Bryszewska M. 2002. Hypochlorous acid-induced oxidative damage of human red blood cells: Effects of tert-butyl hydroperoxide and nitrite on the HOCl reaction with erythrocytes. Bioelectrochemistry. 58, 127–135.

    Article  CAS  Google Scholar 

  18. Liu S., Palek J. 1984. Hemoglobin enhances the self-association of spectrin heterodimers in human erythrocytes. J. Biol. Chem. 259 (18), 11556–11562.

    Article  CAS  Google Scholar 

  19. Snyder L.M., Fortier N.L., Trainor J., Jacobs J., Lob L., Lubin B., Chiu D., Shohet S., Mohandas N. 1985. Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. J. Clin. Invest. 76, 1971–1977.

    Article  CAS  Google Scholar 

  20. Kaul R.K., Köhler H. 1983. Interaction of hemoglobin with Band 3: A review. Klin. Wochenschr. 61, 831–837.

    Article  CAS  Google Scholar 

  21. Welbourn E.M., Wilson M.T., Yusof A., Metodiev M.V., Cooper C.E. 2017. The mechanism of formation, structure, and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radic. Biol. Med. 103, 95–106.

    Article  CAS  Google Scholar 

  22. Jarolim P., Lahav M., Liu S.C., Palek J. 1990. Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: Correlation with a release of hemin. Blood. 76. 2125–2131

    Article  CAS  Google Scholar 

  23. Nicholls P. 1965. Activity of catalase in the red cell. Biochim. Biophys. Acta. 99, 286–297.

    Article  CAS  Google Scholar 

  24. Kinoshita A., Nakayama Y., Kitayama T., Tomita M. 2007. Simulation study of methemoglobin reduction in erythrocytes. Differential contributions of two pathways to tolerance to oxidative stress. FEBS J. 274, 1449–1458.

    Article  CAS  Google Scholar 

  25. Rapoport T.A., Heinrich R., Jacobasch G., Rapoport S. 1974. A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes. Eur. J. Biochem. 42, 107–120.

    Article  CAS  Google Scholar 

  26. Ataullakhanov F.I., Vitvitsky V.M., Jabotinsky A.M., 1977. Quantitative model of human erythrocytes glycolysis. Biofizika (Rus.). 22 (3), 483–488.

    CAS  Google Scholar 

  27. Mulquiney P.J., Kuchel P.W. 1999. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: Equations and parameter refinement. Biochem. J. 342, 581–596.

    Article  CAS  Google Scholar 

  28. Martinovich G.G., Cherenkevich S.N. 2005. Consumption of intracellular hydrogen peroxide in epithelial human amnion cells. Biomeditsinskaya Khimiya (Rus.). 51 (6), 626–633.

    CAS  Google Scholar 

  29. Lipunova E.A., Skorkina M.Yu. 2004. Sistema krasnoy krovi: Sravnitelnaya fiziologoya (The red blood system: Comparative physiology). Belgorod: BelSU Publishing House.

  30. Gebicka L., Banasiak E. 2009 Flavonoids as reductants of ferryl hemoglobin. Acta Biochim. Pol. 56 (3) 509–513.

    Article  CAS  Google Scholar 

  31. Peng Xu D., Washburn M.P., Ping Sun G. Wells W. 1996. Purification and characterization of a glutathione dependent dehydroascorbate reductase from human erythrocytes. Biochem. Biophys. Res. Commun. 221 (1), 117–121.

    Article  Google Scholar 

  32. Bali M., Thomas S.R. 2001. A modelling study of feedforward activation in human erythrocyte glycolysis. C.R. Acad. Sci. III. 324, 185–199.

    Article  CAS  Google Scholar 

  33. Cherenkevich S.N., Martinovich G.G., Khmelnitsky A.I. 2008. Biologicheskie membrany (Biological membranes). Minsk: BSU.

  34. Miłek J. 2018. Estimation of the kinetic parameters for H2O2 enzymatic decomposition and for catalase deactivation. Braz. J. Chem. Eng. 35 (3), 995–1004.

    Article  Google Scholar 

  35. Benfeitas R., Selvaggio G., Antunes F., Coelho P.M.B.M., Salvador A. 2014. Hydrogen peroxide metabolism and sensing in human erythrocytes: A validated kinetic model and reappraisal of the role of peroxiredoxin II. Free Radic. Biol. Med. 74, 35–49.

    Article  CAS  Google Scholar 

  36. Kanias T., Acker J.P. 2010. Biopreservation of red blood cells – the struggle with hemoglobin oxidation. FEBS J. 277, 343–356.

    Article  CAS  Google Scholar 

  37. May J.M., Qu Z., Cobb C.E. 2004. Human erythrocyte recycling of ascorbic acid. J. Biol. Chem. 279 (15), 14975–14982.

    Article  CAS  Google Scholar 

  38. Martinovich G.G., Sazanov L.A., Cherenkevich S.N. 2017. Kletochnaya bioenergetika: Fiziko-khimicheskie i molekularnie osnovy (Cellular bioenergetics: Physico-chemical and molecular basis). M.: LENAND.

  39. Jaffe E.R. 1963. The reduction of methemoglobin in erythrocytes of a patient with congenital methemoglobinemia, subjects with erythrocyte glucose-6-phosphate dehydrogenase deficiency, and normal individuals. Blood. 21 (5), 561–572.

    Article  CAS  Google Scholar 

  40. Mendanha S.A., Anjos J.L.V., Silva A.H.M., Alonso A. 2012. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide. Braz. J. Med. Biol. Res. 45, 473–481.

    Article  CAS  Google Scholar 

  41. Kassa T., Jana S., Meng F., Alayash A.I. 2016. Differential heme release from various hemoglobin redox states and the upregulation of cellular heme oxygenase-1. FEBS Open Bio. 6, 876–884.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was partially supported by the Belarusian Republican Foundation for Basic Research (project no. B20U-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Voinarouski.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by E. Puchkov

APPENDIX

APPENDIX

The system of differential equations used in this study is presented below. In this form, the system was presented in the Wolfram Mathematica software.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voinarouski, V.V., Martinovich, G.G. Regulation of the Structural Stability of Erythrocytes by Hydrogen Peroxide: Mathematical Model and Experiment. Biochem. Moscow Suppl. Ser. A 16, 91–105 (2022). https://doi.org/10.1134/S1990747822010093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747822010093

Keywords:

Navigation