Skip to main content
Log in

Cavity depth on the bacteriorhodopsin peptide surface near the proton carrier Asp96: Data of X-ray structure models

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Three-dimensional X-ray models of the wild-type bacteriorhodopsin structure are investigated by means of the program PyMOL. Construction of the surfaces accessible to the solvent at the cytoplasmic side visualized a cavity near the proton carrier Asp96. The cavity shortens the way of the proton from the membrane surface to this carrier. The distance between the cavity surface and the centre of the carbonic atom of the Asp96 carboxylic group is ∼6 Å. Besides, for model structures 1c3w, 1qhj, and 1BRR, a channel of radius 1.1 Å is revealed between the cytoplasmic surface and Asp96carboxyl. The channel diameter is narrower than the characteristic diameter of the water molecule and apparently does not create conductivity in the nonexcited pigment. It is possible however that along this channel a hydrated “gap” opens at the second phase of a bacteriorhodopsin photocycle related with reprotonation of Asp96.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oesterhelt D., Stoeskenius W. 1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature New Biol. 233(39), 149–152.

    PubMed  CAS  Google Scholar 

  2. Lanyi J.K. 2006. Proton transfers in the bacteriorhodopsin photocycle. Biochim. Biophys. Acta. 1757(8), 1012–1018.

    Article  PubMed  CAS  Google Scholar 

  3. Khitrina L.V., Ksenofontov A.L. 2004. Bacteriorhodopsin. Correspondence of the photocycle and electrogenesis with sites of molecule. Biokhimia (Moscow), (Rus.). 69(12), 1725–1728.

    Google Scholar 

  4. Skulachev V.P. 1992. Rhodopsin: From ion pumps to specialized photoreceptors. In: Proc. Vth Intern. Conf.: Structures and Functions of Retinal Proteins (Dourdan). Ed. Rigaud J.L. Montrouge, France: Collogue INSERM/John Libbey Eurotext Ltd. 221, 229–232.

    Google Scholar 

  5. Danshina S.V., Drachev L.A., Kaulen A.D., Korana Kh.G., Marti T., Mogi T., Skulachev V.P. 1992. The mechanism of H+ transport by bacteriorhodopsin: A study on Asp-96 mutant forms. Biokhimia (Moscow) (Rus.). 57, 1574–1585.

    CAS  Google Scholar 

  6. Skulachev V.P. 1993. Interrelations of bioenergetic and sensory functions of the retinal proteins. Quart. Rev. Biophys. 26(2), 177–199.

    Article  CAS  Google Scholar 

  7. Kaulen A.D. 2000. Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle. Biochim. Biophys. Acta. 1460(1), 204–219.

    Article  PubMed  CAS  Google Scholar 

  8. Kalaidzidis I.V., Kaulen A.D., Radionov A.N., Khitrina L.V. 2001. Photoelectrochemical cycle of bacteriorhodopsin. Biokhimia (Moscow) (Rus.). 66(11), 1511–1526.

    Google Scholar 

  9. Khitrina L.V. 2004. Bacteriorhodopsin. Is water no. 420 the terminal group in the proton transport chain? Biol. membrany (Rus.). 21(6), 473–475.

    Google Scholar 

  10. Shishkov A.V., Ksenofontov A.L., Bogacheva E.N., Kordyukova L.V., Badun G.A., Alekseevsky A.V., Tsetlin V.I., Baratova L.A. 2002. Studying the spatial organization of membrane proteins by means of tritium stratigraphy: Bacteriorhodopsin in purple membrane. Bioelectrochemistry. 56(1), 147–149.

    Article  PubMed  CAS  Google Scholar 

  11. Luecke H., Schobert B., Richter H.T., Cartailler J.P., Lanyi J.K. 1999. Structure of bacteriorhodopsin at 1.55 resolution. J. Mol. Biol. 291(4), 899–911.

    Article  PubMed  CAS  Google Scholar 

  12. Essen L., Siegert R., Lehmann W.D., Oesterhelt D. 1998. Lipid patches in membrane protein oligomers: Crystal structure of the bacteriorhodopsin-lipid complex. Proc. Natl. Acad. Sci. USA. 95(20), 11673–11678.

    Article  PubMed  CAS  Google Scholar 

  13. Schätzler B., Dencher N.A., Tittor J., Oesterhelt D., Yaniv-Checover S., Nachliel E., Gutman M. 2003. Subsecond proton-hole propagation in bacteriorhodopsin. Biophys. J. 84(1), 671–686.

    Article  PubMed  Google Scholar 

  14. Drachev L.A., Kaulen A.D., Khitrina L.V., Skulachev V.P. 1981. Fast stages of photoelectric processes in biological membranes. I. Bacteriorhodopsin. Eur. J. Biochem. 117(3), 461–470.

    Article  PubMed  CAS  Google Scholar 

  15. Kalaidzidis Y.L., Gavrilov A.V., Zaitsev P.V., Kalaidzidis A.L., Korolev E.V. 1997. Pluck —an environment for software development environment. Programmirovaniye (Rus.). 4, 38–46. [Translated.version: Kalaidzidis Y.L., Gavrilov A.V., Zaitsev P.V., Kalaidzidis A.L., Korolev E.V. 1997. Programming and Computer Software. 23 (4), 206–211]

    Google Scholar 

  16. Shinoda T., Ogawa H., Cornelius F., Toyoshima C. 2009. Crystal structure of the sodium-potassium pump at 2.4 resolution. Nature. 459(7245), 446–450.

    Article  PubMed  CAS  Google Scholar 

  17. Pedersen B.P., Buch-Pedersen M.J., Morth J.P., Palmgren M.G., Nissen P. 2007. Crystal structure of the plasma membrane proton pump. Nature. 450(7172), 1111–1114.

    Article  PubMed  CAS  Google Scholar 

  18. Yu E.W., Aires J.R., Nikaido H. 2003. AcrB multidrug efflux pump of Escherichia coli: Composite substratebinding cavity of exceptional flexibility generates its extremely wide substrate specificity. J. Bacteriol. 185(19), 5657–5664.

    Article  PubMed  CAS  Google Scholar 

  19. Belrhali H., Nollert P., Royant A., Menzel C., Rosenbuch J.P., Landau E.M., Pebay-Peyroula E. 1999. Protein, lipid and water organization in bacteriorhodopsin crystals: A molecular view of the purple membrane at 1.9 Å resolution. Structure (London). 7(8), 909–917.

    CAS  Google Scholar 

  20. Subramaniam S., Henderson R. 2000. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature. 406(6796), 653–657.

    Article  PubMed  CAS  Google Scholar 

  21. Nekrasov B.N. 1969. Osnovy obshchey khimii (Bases of General Chemistry), in 3 vols. Vol. 2. Moscow: Khimiya.

    Google Scholar 

  22. Stoeckenius W., Lozier R.H., Bogomolni R.A. 1979. Bacteriorhodopsin and the purple membrane of halobacteria. Biochim. Biophys. Acta. 505(3–4), 215–278.

    PubMed  CAS  Google Scholar 

  23. Drachev L.A., Kaulen A.D., Skulachev V.P., Khitrina L.V., Chekulayeva L.N. 1981. Phases of photoelectrical response of bacteriorhodopsin. Biokhimiya (Moscow) (Rus.). 46(6), 998–1004.

    CAS  Google Scholar 

  24. Khitrina L.V., Drachev L.A., Kaulen A.D., Chekulayeva L.N. 1982. Inhibition of bacteriorhodopsin by formalin and lanthanum. Biokhimiya (Moscow) (Rus.). 47(11), 1763–1772.

    CAS  Google Scholar 

  25. Drachev A.L., Drachev L.A., Kaulen A.D., Khitrina L.V. 1984. The action of lanthanum ions and formaldehyde on the proton-pumping function of bacteriorhodopsin. Eur. J. Biochem. 138(2), 349–356.

    Article  PubMed  CAS  Google Scholar 

  26. Friedman R., Nachliel E., Gutman M. 2003. The role of small intraprotein cavities in the catalytic cycle of bacteriorhodopsin. Biophys. J. 85(2), 886–896.

    Article  PubMed  CAS  Google Scholar 

  27. Hirai T., Subramaniam S., Lanyi J.K. 2009. Structural snapshots of conformational changes in a seven-helix membrane protein: Lessons from bacteriorhodopsin. Curr. Opin Struct. Biol. 19(4), 433–439.

    Article  PubMed  CAS  Google Scholar 

  28. Lanyi J.K., Schobert B. 2006. Propagating structural perturbation inside bacteriorhodopsin: Crystal structures of the M state and the D96A and T46V mutants. Biochemistry. 45(39), 12003–12010.

    Article  PubMed  CAS  Google Scholar 

  29. Hayakawa N., Kasahara T., Hasegawa D., Yoshimura K., Murakami M., Kouyama T. 2008. Effect of xenon binding to a hydrophobic cavity on the proton pumping cycle in bacteriorhodopsin. J. Mol. Biol. 384(4), 812–823.

    Article  PubMed  CAS  Google Scholar 

  30. Drachev L.A., Kaulen A.D., Skulachev V.P. 1984. Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin. FEBS Lett. 178(2), 331–335.

    Article  CAS  Google Scholar 

  31. Heberle J., Riesle J., Thiedemann G., Oesterhelt D., Dencher N.A. 1994. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature. 370(6488), 379–382.

    Article  PubMed  CAS  Google Scholar 

  32. Nachliel E., Gutman M., Kiryati S., Dencher N.A. 1996. Protonation dynamics of the extracellular and cytoplasmic surface of bacteriorhodopsin in the purple membrane. Proc. Natl. Acad. Sci USA. 93(20), 10747–10752.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Khitrina.

Additional information

Original Russian Text © L.V. Khitrina, 2011, published in Biologicheskie Membrany, 2011, Vol. 28, No. 2, pp. 137–144.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khitrina, L.V. Cavity depth on the bacteriorhodopsin peptide surface near the proton carrier Asp96: Data of X-ray structure models. Biochem. Moscow Suppl. Ser. A 5, 198–204 (2011). https://doi.org/10.1134/S1990747811010065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747811010065

Keywords

Navigation