Skip to main content
Log in

Difference in Susceptibility of 3T3 and 3T3-SV40 Cells to Invasion by Opportunistic Pathogens Serratia grimesii

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Cells isolated from a body are resistant to bacterial invasion but lose the resistance upon immortalization and transformation. In this work, interaction of immortalized 3T3 fibroblasts and their in vitro transformed analog 3T3-SV40 cells with opportunistic bacteria Serratia grimesii was studied in a conventional medium and after incubating the cells with an antioxidant N-acetylcysteine (NAC). The 3T3 cells were shown to be approximately twice less sensitive to S. grimesii infection than similar but virus-transformed 3T3- SV40 cells. Incubation of 3T3 cells with 10 and 20 mM NAC enhanced the invasion 1.6 and 2.5-fold, respectively. Under the same conditions, the invasion of 3T3-SV40 cells by the bacteria was enhanced 2.1 and 2.4- fold. These results show that 3T3 cells are more resistant to invasion by S. grimesii than 3T3-SV40 cells, and the difference is preserved after the cells are exposed to 10 and 20 mM NAC. Among the genes which expression is known to be increased by NAC, a special role plays E-cadherin shown to interact with surface proteins (invasins) of pathogenic bacteria. Incubation of 3T3 and 3T3-SV40 cells with NAC resulted in an increased expression of E-cadherin, which correlates with the increased sensitivity of these cells to invasion. Confocal fluorescence microscopy revealed, for the first time, colocalization of S. grimesii with E-cadherin of 3T3 and 3T3-SV40 cells indicating that E-cadherin can be involved in the penetration of S. grimesii into eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bonazzi, M., Lecuit, M., and Cossart, P., Listeria monocytogenes internalin and E-cadherin: from bench to bedside, Cold Spring Harb. Perspect. Biol., 2009, vol. 1, p. a003087. doi 10.1101/cshperspect.a003087

    Article  PubMed  PubMed Central  Google Scholar 

  • Bozhokina, E.S., Khaitlina, S.Yu., and Adam, T., Grimelysin, a novel metalloprotease from Serratia grimesii, is similar to ECP32, Biochem. Biophys. Res. Commun., 2008, vol. 367, pp. 888–892.

    Article  CAS  PubMed  Google Scholar 

  • Bozhokina, E.S., Tsaplina, O.A., Efremova, T.N., Kever, L.V., Demidyuk, I.V., Kostrov, S.V., Adam, T., Komissarchik, Y.Y., and Khaitlina, S.Y., Bacterial invasion of eukaryotic cells can be mediated by actin-hydrolyzing metalloproteases grimelysin and protealysin, Cell Biol. Intern., 2011, vol. 34, pp. 111–118.

    Article  Google Scholar 

  • Bozhokina, E.S., Vakhromova, E.N., Gamaley, I.A., and Khaitlina, S.Yu., N-acetylcysteine increases susceptibility of HeLa cells to bacterial invasion, J. Cell. Biochem., 2013, vol. 114, pp. 1568–1574.

    Article  CAS  PubMed  Google Scholar 

  • Bozhokina, E., Khaitlina, S., and Gamaley, I., Dihydrolipoic but not alpha-lipoic acid affects susceptibility of eukaryotic cells to bacterial invasion, Biochim. Biophys. Res. Commun., 2015, vol. 460, pp. 697–702.

    Article  CAS  Google Scholar 

  • Carabeo, R., Bacterial subversion of host actin dynamics at the plasma membrane, Cell Microbiol., 2011, vol. 13, pp. 1460–1469. eCollection 2017. doi 10.3389/fcimb.2017.00064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cossart, P. and Sansonetti, P.J., Bacterial invasion: the paradigms of enteroinvasive pathogens, Science, 2004, vol. 304, pp. 242–248.

    Article  CAS  PubMed  Google Scholar 

  • Efremova, T.N., Ender, N.A., Brudnaya, M.S., Komissarchik, Ya.Yu., and Khaitlina, S.Yu., Invasion of Escherichia coli A2 induces reorganization of actin microfilaments in Hep-2 cells, Tsitologiia, 1998, vol. 40, no. 6, pp. 524–528.

    CAS  PubMed  Google Scholar 

  • Efremova, T., Ender, Í., Brudnaja, M., and Komissarchik, Y. Khaitlina, S., Specific invasion of transformed cells by Escherichia coli A2 strain, Cell Biol. Intern., 2001, vol. 25, pp. 257–261.

    Article  Google Scholar 

  • Finlay, B.B. and Cossart, P., Exploitation of mammalian host cell functions by bacterial pathogens, Science, 1997, vol. 276, pp. 718–725.

    Article  CAS  PubMed  Google Scholar 

  • Gamaley, I., Efremova, T., Kirpichnikova, K., Kever, L., Komissarchik, Y., Polozov, Y., and Khaitlina, S., N-acetylcystein-induced changes in susceptibility of transformed eukaryotic cells to bacterial invasion, Cell Biol. Intern., 2006, vol. 30, pp. 319–325.

    Article  CAS  Google Scholar 

  • Grimont, F. and Grimont, P.A.D., The fenus Serratia, Prokaryotes, 2006, vol. 6, pp. 219–244.

    Google Scholar 

  • Gustafsson, A.C., Kupershmidt, I., Edlundh-Rose, E., Greco, G., Serafino, A., Krasnowska, E.K., Lundeberg, T., Bracci-Laudiero, L., Romano, M.C., Parasassi, T., and Lundeberg, J., Global gene expression analysis in time series following N-acetyl-L-cysteine induced epithelial differentiation of human normal and cancer cells in vitro, BMC Cancer, 2005, vol. 5, p. 75. doi 10.1186/1471-2407-5-75

    Article  PubMed  PubMed Central  Google Scholar 

  • Haglund, C.M. and Welch, M.D., Pathogens and polymers: microbe–host interactions illuminate the cytoskeleton, J. Cell Biol., 2011, vol. 195, pp. 7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauck, C.R., Borisova, M., and Muenzner, P., Exploitation of integrin function by pathogenic microbes, Curr. Opin. Cell Biol., 2012, vol. 24, pp. 637–644.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, C., Ohlsen, K., and Hauck, C.R., Integrinmediated uptake of fibronectin-binding bacteria, Eur. J. Cell Biol., 2011, vol. 90, pp. 891–896.

    Article  CAS  PubMed  Google Scholar 

  • Khaitlina, S.Yu., Collins, J.H., Kuznetsova, I.M, Pershina, V.P., Synakevich, I.G., Turoverov, K.K., and Usmanova, A.M., Physicochemical properties of actin cleaved with bacterial protease from E. coli A2 strain, FEBS Lett., 1991, vol. 279, pp. 49–51.

    Article  CAS  PubMed  Google Scholar 

  • Mattock, E. and Blocker, A.J., How do the virulence factors of Shigella work together to cause disease?, Front. Cell Infect. Microbiol., 2017, vol. 64. eCollection 2017. doi 10.1186/1471-2407-5-75

  • Parasassi, T., Brunelli, R., Bracci-Laudiero, L., Greco, G., Gustafsson, A.C., Krasnowska, E.K., Lundeberg, J., Lundeberg, T., Pittaluga, E., Romano, M.C., and Serafino, A., Differentiation of normal and cancer cells induced by sulfhydryl reduction: biochemical and molecular mechanisms, Cell Death Differ., 2005, vol. 12, pp. 1285–1296.

    Article  CAS  PubMed  Google Scholar 

  • Parasassi, T., Brunelli, R., Costa, G., De Spirito, M., Krasnowska, E., Lundeberg, T., Pittaluga, E., and Ursini, F., Thiol redox transitions in cell signaling: a lesson from Nacetylcysteine, Scientific World J., 2010, vol. 10, pp. 1192–1202. doi 10.1100/tsw.2010.104

    Article  CAS  Google Scholar 

  • Pizarro-Cerda, J. and Cossart, P., Bacterial adhesion and entry into host cells, Cell, 2006, vol. 124, pp. 715–727.

    Article  CAS  PubMed  Google Scholar 

  • Pizarro-Cerda, J., Kuhbacher, A., and Cossart, P., Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view, Cold Spring Harb. Perspect. Med., 2012, vol. 2, p. a010009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prouty, A.M. and Gunn, J.S., Salmonella enterica serovar typhimurium invasion is repressed in the presence of bile, Infect. Immun., 2000, vol. 68, pp. 6763–6769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin, H., Multistage carcinogenesis in cell culture, Dev. Biol., 2001, vol. 106, pp. 61–66.

    CAS  Google Scholar 

  • Rubin, H., Chow, M., and Yao, A., Cellular aging, destabilization, and cancer, Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 1825–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansonetti, P., Phagocytosis of bacterial pathogens: implications in the host response, Semin. Immunol., 2001, vol. 6, pp. 381–390.

    Article  Google Scholar 

  • Schwarz-Linek, U., Höök, M., Potts, J.R., The molecular basis of fibronectin-mediated bacterial adherence to host cells, Mol. Microbiol., 2004, vol. 52, pp. 631–641. doi 10.1111/j.1365-2958.2004.04027.x

    Article  CAS  PubMed  Google Scholar 

  • Singh, B., Fleury, C., Jalalvand, F., and Riesbeck, K., Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host, FEMS Microbiol. Rev., 2012, vol. 36, pp. 1122–1180.

    Article  CAS  PubMed  Google Scholar 

  • Todaro, G.J., Green, H., and Goldberg, B.D., Transformation of Properties of an established cell line by SV40 and polyoma virus, Proc. Natl. Acad. Sci. U. S. A., 1964, vol. 51, pp. 66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran Van Nhieu, G., Enninga, J., Sansonetti, P., and Grompone, G., Tyrosine kinase signaling and type III effectors orchestrating Shigella invasion, Curr. Opin. Microbiol., 2005, vol. 8, pp. 16–22.

    Article  CAS  Google Scholar 

  • Valencia-Gallardo, C.M., Carayol, N., and Tran Van Nhieu, G., Cytoskeletal mechanics during Shigella invasion and dissemination in epithelial cells, Cell Microbiol., 2015, vol. 17, pp. 174–182.

    Article  CAS  PubMed  Google Scholar 

  • Van Wijk, X.M., Dohrmann, S., Hallstrom, B.M., Li, S., Voldborg, B.G., Meng, B.X., McKee, K.K., van Kuppevelt, T.H., Yurchenco, P.D., Palsson, B.O., Lewis, N.E., Nizet, V., and Eskoa, J.D., Whole-genome sequencing of invasion-resistant cells identifies laminin-2 as a host factor for bacterial invasion, mBio, 2017, vol. 1, p. e02128–16.

    Google Scholar 

  • Velge, P., Bottreau, E., Kaeffer, B., and Pardon, P., Cell immortalization enhances Listeria monocytogenes invasion, Med. Microbiol. Immunol., 1994, vol. 183, pp. 145–158.

    Article  CAS  PubMed  Google Scholar 

  • Velge, P., Kaeffer, B., Bottreau, E., and Van Langendonck, N., The loss of contact inhibition and anchorage-dependent growth are key steps in the acquisition of Listeria monocytogenes susceptibility phenotype by non-phagocytic cells, Biol. Cell., 1995, vol. 85, pp. 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Velge, P., Bottreau, E., Van-Langendonck, N., and Kaeffer, B., Cell proliferation enhances entry of Listeria monocytogenes into intestinal epithelial cells by two proliferationdependent entry pathways, J. Med. Microbiol., 1997, vol. 46, pp. 681–692.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Bozhokina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivlev, A.P., Efremova, T.N., Khaitlina, S.Y. et al. Difference in Susceptibility of 3T3 and 3T3-SV40 Cells to Invasion by Opportunistic Pathogens Serratia grimesii. Cell Tiss. Biol. 12, 33–40 (2018). https://doi.org/10.1134/S1990519X1801008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X1801008X

Keywords

Navigation