Skip to main content
Log in

Analysis of EGF receptor endocytosis dynamics based on semiquantitative processing of confocal immunofluorescent images of fixed cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Endocytosis of signaling receptors, EGF receptor in particular, starting at the plasma membrane and finishing in perinuclear lysosomes entails endosome multiple interactions with homotypic endosomes and vesicles of other origin (lysosomes, trans-Golgi network), which results in changes of endosome size. A distinctive feature of the endocytic pathway is endosome translocation from the cell periphery to the juxtanuclear region. Thus, endocytosis is a highly dynamic process developing in time and space. One of the most productive approaches to studying endocytosis regulation is light immunofluorescent microscopy, which allows determining the endocytosis dynamics at the level of single or several cells. Different effects that influence endocytic regulator components are inevitably reflected on the dynamics on endosome size and/or its translocation. This makes it possible to reveal both primary and secondary components of the regulatory machinery. However, visual determination of such effects is often subjective and does not allow statistically reliable data to be obtained. Comparison of different experiments, even in the case of the same series, also may be complicated. In this work, we use such parameters as apparent vesicle size (diameter, area, or volume) and vesicle number per cell to provide quantitative estimation of fusion efficacy. Moreover, we propose a coefficient reflecting vesicle clusterization in the perinuclear region as a measure of their translocation along microtubules toward the nucleus (D clust). We present the application these parameters using EGF receptor endocytosis as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MVEs:

multivesicular endosomes

MTs:

microtubules

PNAs:

perinuclear area

MTOC:

microtubule organizing center

EGF:

epidermal growth factor

EGF:

R-EGF receptor

References

  • Aniento, F., Emans, N., Griffiths, G., and Gruenberg, J., Cytoplasmic dynein-dependent vesicular transport from early to late endosomes, J. Cell Biol., 1993, vol. 123, pp. 1373–1388.

    Article  PubMed  CAS  Google Scholar 

  • Barbieri, M.A., Kong, C., Chen, P.I., Horazdovsky, B.F., and Stahl, P.D., The SRC homology 2 domain of rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis, J. Biol. Chem., 2003, vol. 278, pp. 32027–3236.

    Article  PubMed  CAS  Google Scholar 

  • Beas, A.J., Taupin, V., Teodorof, C., Nguyen, L.T., Garsia-Marcos, M., and Farquhar, M.G., Gas promotes EEA1 endosome maturation and shuts down proliferative signal through interaction with GIV (girdin), Mol. Biol. Cell, 2012, vol. 23, pp. 4623–4634.

    Article  PubMed  CAS  Google Scholar 

  • Christoforidis, S., McBride, H.M., Burgoyne, R.D., and Zerial, M., The Rab5 effector EEA1 is a core component of endosome docking, Nature, 1999, vol. 397, pp. 621–625.

    Article  PubMed  CAS  Google Scholar 

  • Collinet, C., Sto, M., Bradshaw, C.R, Samusik, N., et al., Systems survey of endocytosis by multiparametric image analysis, Nature, 2010, vol. 464, pp. 243–249.

    Article  PubMed  CAS  Google Scholar 

  • Das, S. and Pellett, P.E., Spatial relationships between markers for secretory and endosomal machinery in human cytomegalovirus-infected cells versus those in uninfected cells, J. Virol., 2011, vol. 85, pp. 5864–5879.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, K.W. and Maxfield, F.R., Delivery of ligands from sorting endosomes to late endosomes occurs by maturation of sorting endosomes, J. Cell Biol., 1992, vol. 120, pp. 77–83.

    Google Scholar 

  • Futter, C.E., Pearse, A., Hewlett, L.J., and Hopkins, C.R., Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes, J. Cell Biol., 1996, vol. 132, pp. 1011–1023.

    Article  PubMed  CAS  Google Scholar 

  • Gillooly, D.J., Morrow, I.C., Lindsay, M., et al., Localization of phosphatidylinositol-3-phosphate in yeast and mammalian cells, EMBO J., 2000, vol. 19, pp. 4577–4588.

    Article  PubMed  CAS  Google Scholar 

  • Johannessen, L.E., Pedersen, N.M., Pedersen, K.W., Madshus, I.H., and Stang, E., Activation of the epidermal growth factor (EGF) receptor induces formation of EGF receptor- and Grb2-containing clathrin-coated pits, Mol. Cell. Biol., 2006, vol. 26, pp. 389–401.

    Article  PubMed  CAS  Google Scholar 

  • Lawe, D.C., Patki, V., Heller-Harrison, R., Lambright, D., and Corvera, S., The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding, J. Biol. Chem., 2000, vol. 275, pp. 3699–3705.

    Article  PubMed  CAS  Google Scholar 

  • Loubéry, S., Wilhelm, C., Hurbain, I., Neveu, S., Louvard, D., and Coudrier, E., Different microtubule motors move early and late endocytic compartments, Traffic, 2008, vol. 9, pp. 492–509.

    Article  PubMed  Google Scholar 

  • Luzio, J.P., Gray, S.R., and Bright, N.A., Endosome-lysosome fusion, Biochem. Soc. Trans., 2010, vol. 38, pp. 1413–1416.

    Article  PubMed  CAS  Google Scholar 

  • Nada, S., Hondo, A., Kasai, A., Koike, M., Saito, K., Uchiyama, Y., and Okada, M., The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes, EMBO J., 2009, vol. 28, pp. 477–489.

    Article  PubMed  CAS  Google Scholar 

  • Platta, H.W. and Stenmark, H., Endocytosis and signaling, Curr. Opin. Cell Biol., 2011, vol. 23, pp. 393–403.

    Article  PubMed  CAS  Google Scholar 

  • Polo, S. and Di Fiore, P.P., Endocytosis conducts the cell signaling orchestra, Cell, 2006, vol. 124, pp. 897–900.

    Article  PubMed  CAS  Google Scholar 

  • Sablina, A.A., Chudinova, E.M., Nadezhdina, E.S., and Ivanov, P.A., Stress granules in the cells with intact and discrupted microtubules: analysis with new algorithm of image processing, Tsitologiia, 2012, vol. 54, no. 7, pp. 560–565.

    PubMed  CAS  Google Scholar 

  • Schiefermeier, N., Teis, D., and Huber, L.A., Endosomal signaling and cell migration, Curr. Opin. Cell Biol., 2011, vol. 23, pp. 615–620.

    Article  PubMed  CAS  Google Scholar 

  • Zheleznova, N.N., Melikova, M.S., Kharchenko, M.V., Nikolsky, N.N., and Kornilova, E.S., The role of phosphatidylinositol-3-kinases P85/P110 and HVPS34 in endocytosis of EGF-receptor complexes, Tsitologiia, 2003, vol. 45, no. 6, pp. 574–581.

    PubMed  CAS  Google Scholar 

  • Zoncu, R., Perera, R.M., Balkin, D.M., Pirruccello, M., Toomre, D., and De Camilli, P.A., Phosphoinositide switch controls the maturation and signaling properties of APPL endosomes, Cell, 2009, vol. 136, pp. 1110–1121.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zlobina.

Additional information

Original Russian Text © M.V. Zlobina, M.V. Kharchenko, E.S. Kornilova, 2013, published in Tsitologiya, 2013, Vol. 55, No. 5, pp. 348–357.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zlobina, M.V., Kharchenko, M.V. & Kornilova, E.S. Analysis of EGF receptor endocytosis dynamics based on semiquantitative processing of confocal immunofluorescent images of fixed cells. Cell Tiss. Biol. 7, 382–391 (2013). https://doi.org/10.1134/S1990519X13040160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X13040160

Keywords

Navigation