Skip to main content
Log in

A novel feeder-free system for human embryonic stem cells and characterization of their sublines with autogenic and allogenic cultivation

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

We developed a feeder-free system for human embryonic stem cells (ESCs) based on extracellular matrix protein (ECM) as the substrate. ECM was synthesized by mesenchymal stem cells (SC5-MSC) derived from an original ESC line, SC5. The ECM proteins fibronectin and laminin facilitate ESC growth in the feeder-free system. An important component of this system is a conditioned medium from SC5-MSC cells. Two ESC sublines were obtained: SC5-FF cells were cultured in an autogenic, and SC7-FF in an allogenic, feeder-free system. SC5-FF and SC7-FF underwent more than 300 and 115 population doublings, respectively, and retain a normal diploid karyotype. Histochemical and immunofluorescence assays showed that both sublines express undifferentiated ESC markers—alkaline phosphatase, Oct-4, SSEA-4, and TRA-1-81—as well as multidrug resistance transporter ABCG2. PCR assay revealed that undifferentiated SC5-FF cells, like the original SC5 line, maintained on feeder cells express OCT4 and NANOG genes common for somatic cells and DPPA3/STELLA and DAZL genes common for germ line cells. Expression of these genes was gradually diminished during differentiation of embryoid bodies, whereas expression of genes specific for early differentiated cells increased: GATA4, AFP (extraembryonic and embryonic endoderm), PAX6 (neuroectoderm), and BRY (mesoderm). ESC properties (karyotype structure, average time of population doubling, undifferentiated cell number in population) of the SC5 and SC7 and SC5-FF and SC7-FF sublines derived from original ESCs were not altered. It shows that the feeder-free systems, which are more stable than any feeder systems, maintain key ESC properties and may be recommended for fundamental, biomedical, and pharmacological studies performed with human ESCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, S., Riggs, M.J., Nelson, K., Lee, V., and Rao, R.R., Characterization of Human Fibroblast-Derived Extracellular Matrix Components for Human Pluripotent Stem Cell Propagation, Acta Biomater., 2010, vol. 6, pp. 4622–4633.

    Article  PubMed  CAS  Google Scholar 

  • Amit, M., Chebath, J., Margulets, V., Laevsky, I., Miropolsky, Y., Shariki, K., Peri, M., Blais, I., Slutsky, G., Revel, M., and Itskovitz-Eldor, J., Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells, Stem Cell Rev., 2010, vol. 6, pp. 248–259.

    Article  PubMed  Google Scholar 

  • Amit, M., Shariki, C., Margulets, V., and Itskovitz-Eldor, J., Feeder and Serum Free Culture of Human Embryonic Stem Cells, Biol. Reprod., 2004, vol. 70, pp. 837–845.

    Article  PubMed  CAS  Google Scholar 

  • Apati, A., Orban, T.I., Varga, N., Nemeth, A., Schamberger, A., Krizsik, V., Erdelyi-Belle, B., Homolya, L., Varady, G., Padanyi, R., Karaszi, E., Kemna, E.W.M., Nemet, K., and Sarkadi, B., High Level Functional Expression of the ABCG2 Multidrug Transporter in Undifferentiated Human Embryonic Stem Cells, Biochim. Biophys. Acta, 2008, vol. 1778, pp. 2700–2709.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, M.A., Camarasa, M.V., Bates, N., Small, F., Murray, P., Edgar, D., and Kimber, S.J., Analysis of the Distinct Functions of Growth Factors and Tissue Culture Substrates Necessary for the Long-Term Self-Renewal of Human Embryonic Stem Cell Lines, Stem Cell Res., 2009, vol. 3, pp. 28–38.

    Article  PubMed  CAS  Google Scholar 

  • Beattie, G.M., Lopez, A.D., Bucay, N., Hinton, A., Firpo, M.T., King, C.C., and Hayek, A., Activin A Maintains Pluripotency of Human Embryonic Stem Cells in the Absence of Feeder Layers, Stem Cells, 2005, vol. 23, pp. 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Braam, S.R., Zeinstra, L., Litjens, S., Ward-van Oostwaard, D., van den Brink, S., van Laake, L., Lebrin, F., Kats, P., Hochstenbach, R., Passier, R., Sonnenberg, A., and Mummery, C.L., Recombinant Vitronectin Is a Functionally Defined Substrate that Supports Human Embryonic Stem Cell Self-Renewal via Alphavbeta5 Integrin, Stem Cells, 2008, vol. 26, pp. 2257–2265.

    Article  PubMed  CAS  Google Scholar 

  • Brafman, D.A., Chang, C.W., Fernandez, A., Willert, K., Varghese, S., and Chien, S., Long-Term Human Pluripotent Stem Cell Self-Renewal on Synthetic Polymer Surfaces, Biomaterials, 2010, vol. 31, pp. 9135–9144.

    Article  PubMed  CAS  Google Scholar 

  • Burton, P., Adams, D.R., Abraham, A., Allcock, R.W., Jiang, Z., McCahill, A., Gilmour, J., McAbney, J., Kane, N.M., Baillie, G.S., McKenzie, F.R., Baker, A.H., Houslay, M.D., Mountford, J.C., and Milligan, G., Identification and Characterization of Small-Molecule Ligands that Maintain Pluripotency of Human Embryonic Stem Cells, Biochem. Soc. Trans., 2010, vol. 38, pp. 1058–1061.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H.F., Chuang, C.Y., Shieh, Y.K., Chang, H.W., Ho, H.N., and Kuo, H.C., Novel Autogenic Feeders Derived from Human Embryonic Stem Cells (hESCs) Support an Undifferentiated Status of HESCs in Xeno-Free Culture Conditions, Hum. Reprod., 2009, vol. 24, pp. 1114–1125.

    Article  PubMed  CAS  Google Scholar 

  • Chin, A.C., Padmanabhan, J., Oh, S.K., and Choo, A.B., Defined and Serum-Free Media Support Undifferentiated Human Embryonic Stem Cell Growth, Stem Cells Dev., 2010, vol. 19, pp. 753–761.

    Article  PubMed  CAS  Google Scholar 

  • Choo, A., Ngo, A.S., Ding, V., Oh, S., and Kiang, L.S., Autogeneic Feeders for the Culture of Undifferentiated Human Embryonic Stem Cells in Feeder and Feeder-Free Conditions, Methods Cell Biol., 2008, vol. 86, pp. 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Cobo, F., Navarro, J.M., Herrera, M..I, Vivo, A., Porcel, D., Hernández, C., Jurado, M., García-Castro, J., and Menendez, P., Electron Microscopy Reveals the Presence of Viruses in Mouse Embryonic Fibroblasts but Neither in Human Embryonic Fibroblasts nor in Human Mesenchymal Cells Used for hESC Maintenance: Toward an Implementation of Microbiological Quality Assurance Program in Stem Cell Banks, Cloning Stem Cells, 2008, vol. 10, pp. 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Evseenko, D, Schenke-Layland, K., Dravid, G., Zhu, Y., Hao, Q.L., Scholes, J., Wang, X.C., Maclellan, W.R., and Crooks, G.M., Identification of the Critical Extracellular Matrix Proteins that Promote Human Embryonic Stem Cell Assembly, Stem Cells Dev., 2009, vol. 18, pp. 919–928.

    Article  PubMed  CAS  Google Scholar 

  • Filonenko, E.S., Kamnev, A.N., Zautorov, V.G., Shutova, M.V., Tskhovrebova, L.V., Bogomazova, A.N., Kiselev, S.L., and Lagar’kova, M.A., Characteristics of Cultivation of Human ESCs in the Absence of Serum and Feeder, Klet. Transplantol. Tkan. Inzhener., 2008, vol. 3, no. 3, pp. 31–33.

    Google Scholar 

  • Fletcher, J.M., Ferrier, P.M., Gardner, J.O., Harkness, L., Dhanjal, S., Serhal, P., Harper, J., Delhanty, J., Brownstein, D.G., Prasad, Y.R., Lebkowski, J., Mandalam, R., Wilmut, I., and De Sousa, P.A., Variations in Humanized and Defined Culture Conditions Supporting Derivation of New Human Embryonic Stem Cell Lines, Cloning Stem Cells, 2006, vol. 8, pp. 319–334.

    Article  PubMed  CAS  Google Scholar 

  • Fu, X. and Xu, Y., Self-Renewal and Scalability of Human Embryonic Stem Cells for Human Therapy, Regen. Med., 2011, vol. 6, pp. 327–334.

    Article  PubMed  Google Scholar 

  • Fu, X., Toh, W.S., Liu, H., Lu, K., Li, M., and Cao, T., Establishment of Clinically Compliant Human Embryonic Stem Cells in an Autologous Feeder-Free System, Tissue Eng. Part C Methods, 2011, vol. 17, pp. 927–937.

    Article  PubMed  Google Scholar 

  • Fu, X., Toh, W.S., Liu, H., Lu, K., Li, M., Hande, M.P., and Cao, T., Autologous Feeder Cells from Embryoid Body Outgrowth Support the Long-Term Growth of Human Embryonic Stem Cells More Effectively than Those from Direct Differentiation, Tissue Eng. Part C Methods, 2010, vol. 16, pp. 719–733.

    Article  PubMed  CAS  Google Scholar 

  • Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., Carpenter, M.K., Itskovitz-Eldor, J., and Rao, M.S., Differences between Human and Mouse Embryonic Stem Cells, Dev. Biol., 2004, vol. 269, pp. 360–380.

    Article  PubMed  CAS  Google Scholar 

  • Gordeeva, O.F., Lifantseva, N.V., and Nikonova, T.M., Regulation of in vitro and in vivo Differentiation of Mouse Embryonic Stem Cells, Embryonic Germ Cells and Teratocarcinoma Cells by TGFβ Family Signaling Factors, Russ. J. Dev. Biol., 2009, vol. 40, no. 6, pp. 325–338.

    Article  CAS  Google Scholar 

  • Greber, B., Lehrach, H., and Adjaye, J., Fibroblast Growth Factor 2 Modulates Transforming Growth Factor β Signaling in Mouse Embryonic Fibroblasts and Human ESCs (hESCs) to Support hESC Self-Renewal, Stem Cell, 2007, vol. 25, pp. 455–464.

    Article  CAS  Google Scholar 

  • Heiskanen, A., Satomaa, T., Tiitinen, S., Laitinen, A., Mannelin, S., Impola, U., Mikkola, M., Olsson, C., Miller-Podraza, H., Blomqvist, M., Olonen, A., Salo, H., Lehenkari, P., Tuuri, T., Otonkoski, T., Natunen, J., Saarinen, J., and Laine, J., N-glycolylneuraminic Acid Xenoantigen Contamination of Human Embryonic and Mesenchymal Stem Cells Is Substantially Reversible, Stem Cells, 2006, vol. 25, pp. 197–202.

    Article  PubMed  Google Scholar 

  • Hernandez, D., Ruban, L., and Mason, C., Feeder-Free Culture of Human Embryonic Stem Cells for Scalable Expansion in a Reproducible Manner, Stem Cells Dev., 2010, vol. 20, pp. 1089–1098.

    Article  Google Scholar 

  • Higuchi, A., Ling, Q.D., Ko, Y.A., Chang, Y., and Umezawa, A., Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells, Chem. Rev., 2011, vol. 111, pp. 3021–3035.

    Article  PubMed  CAS  Google Scholar 

  • Hongisto, H., Vuoristo, S., Mikhailova, A., Suuronen, R., Virtanen, I., Otonkoski, T., and Skottman, H., Laminin-511 Expression Is Associated with the Functionality of Feeder Cells in Human Embryonic Stem Cell Culture, Stem Cell Res., 2012, vol. 8, pp. 97–108.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, C.S., Radan, L., Betts, D., Postovit, L.M., and Lajoie, G.A., Proteomic Analysis of Extracellular Matrices Used in Stem Cell Culture, Proteomics, 2011, vol. 11, pp. 3983–3991.

    Article  PubMed  CAS  Google Scholar 

  • Ilic, D., Stephenson, E., Wood, V., Jacquet, L., Stevenson, D., Petrova, A., Kadeva, N., Codognotto, S., Patel, H., Semple, M., Cornwell, G., Ogilvie, C., and Braude, P., Derivation and Feeder-Free Propagation of Human Embryonic Stem Cells under Xeno-Free Conditions, Cytotherapy, 2012, vol. 14, pp. 122–128.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.B., Chu, C.H., Pendleton, J.C., Betenbaugh, M.J., Shiloach, J., Baljinnyam, B., Rubin, J.S., and Shamblott, M.J., Proliferation and Pluripotency of Human Embryonic Stem Cells Maintained on Type I Collagen, Stem Cells Dev., 2010, vol. 19, pp. 1923–1935.

    Article  PubMed  CAS  Google Scholar 

  • Klim, J.R., Li, L., Wrighton, P.J., Piekarczyk, M.S., and Kiessling, L.L., A Defined Glycosaminoglycan-Binding Substratum for Human Pluripotent Stem Cells, Nat. Methods, 2010, vol. 7, pp. 989–994.

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya, I., Chung, Y., Meisner, L., Johnson, J., West, M.D., and Lanza, R., Human Embryonic Stem Cells Derived Without Feeder Cells, Lancet, 2005, vol. 365, pp. 1636–1641.

    Article  PubMed  CAS  Google Scholar 

  • Kolhar, P., Kotamraju, V.R., Hikita, S.T., Clegg, D.O., and Ruoslahti, E., Synthetic Surfaces for Human Embryonic Stem Cell Culture, J. Biotechnol., 2010, vol. 146, pp. 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Koltsova, A.M., Gordeeva, O.F., Krylova, T.A., Lifantseva, N.V., Musorina, A.S., Yakovleva, T.K., and Poljanskaya, G.G., Comparative Characteristics of New Human Embryonic Stem Cell Lines SC5, SC6, SC7, and SC3a, Russ. J. Dev. Biol., 2011, vol. 42, no. 4, pp. 212–225.

    Article  CAS  Google Scholar 

  • Krylova, T.A., Koltsova, A.M., Zenin, V.V., Musorina, A.S., Yakovleva, T.K., and Poljanskaya, G.G., Comparative Characteristics of New Lines of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells, Bone Marrow, and Foreskin, Cell Tiss. Biol., 2012, vol. 6, no. 2, pp. 95–108.

    Article  Google Scholar 

  • Kubikova, I., Konecna, H., Sedo, O., Zdrahal, Z., Rehulka, P., Hribkova, H., Rehulkova, H., Hampl, A., Chmelik, J., and Dvorak, P., Proteomic Profiling of Human Embryonic Stem Cell-Derived Microvesicles Reveals a Risk of Transfer of Proteins of Bovine and Mouse Origin, Cytotherapy, 2009, vol. 11, pp. 330–340.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K., Cleavage of Structural Proteins during the Assembly of the Head of T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E.J., Kang, H..J, Lee, H.N., Kang, S.K., Kim, K.H., Lee, S.W., Lee, G., Park, Y.B., and Kim, H.S., New Culture System for Human Embryonic Stem Cells: Autologous Mesenchymal Stem Cell Feeder without Exogenous Fibroblast Growth Factor 2, Differentiation, 2012, vol. 83, pp. 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Kim, J., Park, T.J., Shin, Y., Lee, S.Y., Han, Y.M., Kang, S., and Park, H.S., The Effects of the Physical Properties of Culture Substrates on the Growth and Differentiation of Human Embryonic Stem Cells, Biomaterials, 2011, vol. 32, pp. 8816–8829.

    Article  PubMed  CAS  Google Scholar 

  • Levine, A.J. and Brivanlou, A.H., GDF3 at the Crossroads of TGF-β Signaling, Cell Cycle, 2006, vol. 5, pp. 1069–1073.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z, Qiu, D, Xu, K, Sridharan, I, Qian, X, and Wang, R., Analysis of Affinity Maps of Membrane Proteins on Individual Human Embryonic Stem Cells, Langmuir, 2011, vol. 27, pp. 8294–8301.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Song, Z., Zhao, Y., Qin, H., Cai, J., Zhang, H., Tiaxin, Yu., Jiang, S., Wang, G., Ding, M., and Deng, H., A Novel Chemical-Defined Medium with bFGF and N2 B27 Supplements Supports Undifferentiated Growth in Human Embryonic Stem Cells, Biochem. Biophys. Res. Commun., 2006, vol. 346, pp. 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J., Hou, R., Booth, C.J., Yang, S.-H., and Snyder, M., Defined Culture Conditions of Human Embryonic Stem Cells, Proc. Natl. Acad. USA, 2006, vol. 103, pp. 5688–5693.

    Article  CAS  Google Scholar 

  • Ludwig, T.E., Bergendahl, V., Levenstein, M.E., Yu, J., Probasco, M.D., and Thomson, J.A., Feeder-Independent Culture of Human Embryonic Stem Cells, Nat. Methods, 2006a, vol. 3, pp. 637–646.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, T.E., Levenstein, M.E., Jones, M.J., Berggren, W.T., Mitchen, E.R., Frane, J.L., Crandall, L.J., Daigh, C.A., Conard, K.R., Piekarczyk, M.S., Llanas, R.A., and Thomson, J.A., Derivation of Human Embryonic Stem Cells in Defined Conditions, Nat. Biotechnol., 2006b, vol. 24, pp. 185–187.

    Article  PubMed  CAS  Google Scholar 

  • Mahlstedt, M.M., Anderson, D., Sharp, J.S., McGilvray, R., Muñoz, M.D., Buttery, L.D., Alexander, M.R., Rose, F.R., and Denning, C., Maintenance of Pluripotency in Human Embryonic Stem Cells Cultured on a Synthetic Substrate in Conditioned Medium, Biotechnol. Bioeng., 2010, vol. 105, pp. 130–140.

    Article  PubMed  CAS  Google Scholar 

  • Manton, K.J., Richards, S., Van Lonkhuyzen, D., Cormack, L., Leavesley, D., and Upton, Z., A Chimeric Vitronectin: IGF-I Protein Supports Feeder-Cell-Free and Serum-Free Culture of Human Embryonic Stem Cells, Stem Cells Dev., 2010, vol. 19, pp. 1297–1305.

    Article  PubMed  CAS  Google Scholar 

  • Martin, M.J., Muotri, A., Gage, F., and Varki, A., Human Embryonic Stem Cells Express an Immunogenic Nonhuman Sialic Acid, Nat. Med., 2005, vol. 11, pp. 228–232.

    Article  PubMed  CAS  Google Scholar 

  • Melkoumian, Z., Weber, J.L., Weber, D.M., Fadeev, A.G., Zhou, Y., Dolley-Sonneville, P., Yang, J., Qiu, L., Priest, C.A., Shogbon, C., Martin, A.W., Nelson, J., West, P., Beltzer, J.P., Pal, S., and Brandenberger, R., Synthetic Peptide-Acrylate Surfaces for Long-Term Self-Renewal and Cardiomyocyte Differentiation of Human Embryonic Stem Cells, Nat. Biotechnol. 2010, vol. 28, pp. 606–610.

    Article  PubMed  CAS  Google Scholar 

  • Meng, G., Liu, S., Li, X., Krawetz, R., and Rancourt, D.E., Extracellular Matrix Isolated from Foreskin Fibroblasts Supports Long-Term Xeno-Free Human Embryonic Stem Cell Culture, Stem Cells Dev., 2010a, vol. 19, pp. 547–556.

    Article  PubMed  CAS  Google Scholar 

  • Meng, Y., Eshghi, S., Li, Y.J., Schmidt, R., Schaffer, D.V., and Healy, K.E., Characterization of Integrin Engagement during Defined Human Embryonic Stem Cell Culture, FASEB J., 2010, vol. 24, pp. 1056–1065.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, T., Futaki, S., Hasegawa, K., Sanzen, N., Hayashi, M., Kawase, E., Sekiguchi, K., Nakatsuji, N., and Suemori, H., Recombinant Human Laminin Isoforms can Support the Undifferentiated Growth of Human Embryonic Stem Cells, Biochem. Biophys. Res. Commun., 2008, vol. 375, pp. 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Mohr, J.C., de Pablo, J.J., and Palecek, S.P., 3-D Microwell Culture of Human Embryonic Stem Cells, Biomaterials, 2006, vol. 27, pp. 6032–6042.

    Article  PubMed  CAS  Google Scholar 

  • Montes, R., Ligero, G., Sanchez, L., Catalina, P., de la Cueva, T., Nieto, A., Melen, G.J., Rubio, R., García-Castro, J., Bueno, C., and Menendez, P., Feeder-Free Maintenance of HESCs in Mesenchymal Stem Cell-Conditioned Media: Distinct Requirements for TGF-beta and IGF-II, Cell Res., 2009, vol. 19, pp. 698–709.

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka, M., Si-Tayeb, K., Akaike, T., and Duncan, S.A., Culture of Human Pluripotent Stem Cells Using Completely Defined Conditions on a Recombinant E-Cadherin Substratum, BMC Dev. Biol., 2010, vol. 10, p. 60.

    Article  PubMed  Google Scholar 

  • Nandivada, H., Villa-Diaz, L.G., O’shea, K.S., Smith, G.D., Krebsbach, P.H., and Lahann, J., Fabrication of Synthetic Polymer Coatings and Their Use in Feeder-Free Culture of Human Embryonic Stem Cells, Nat. Protoc., 2011, vol. 6, pp. 1037–1043.

    Article  PubMed  CAS  Google Scholar 

  • Nieto, A., Cabrera, C.M., Catalina, P., Cobo, F., Barnie, A., Cortés, J.L., Barroso, del Jesus, A., Montes, R., and Concha, A., Effect of Mitomycin-C on Human Foreskin Fibroblasts Used as Feeders in Human Embryonic Stem Cells: Immunocytochemistry MIB1 Score and DNA Ploidy and Apoptosis Evaluated by Flow Cytometry, Cell Biol. Int., 2007, vol. 31, pp. 269–278.

    Article  PubMed  CAS  Google Scholar 

  • Ozkinay, C. and Mitelman, F., A Simple Trypsin-Giemsa Technique Producing Simultaneous G- and C-Banding in Human Chromosomes, Hereditas, 1979, vol. 90, pp. 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Pal, R., Totey, S., Mamidi, M.K., Bhat, V.S., and Totey, S., Propensity of Human Embryonic Stem Cell Lines during Early Stage of Lineage Specification Controls Their Terminal Differentiation into Mature Cell Types, Exp. Biol. Med. (Maywood), 2009, vol. 234, pp. 1230–1243.

    Article  CAS  Google Scholar 

  • Rodin, S., Domogatskaya, A., Ström, S., Hansson, E.M., Chien, K.R., Inzunza, J., Hovatta, O., and Tryggvason, K., Long-Term Self-Renewal of Human Pluripotent Stem Cells on Human Recombinant Laminin-511, Nat. Biotechnol., 2010, vol. 28, pp. 611–615.

    Article  PubMed  CAS  Google Scholar 

  • Rosler, E., Fisk, G.J., Ares, X., Irving, J., Miura, T., Rao, M.S., and Carpenter, M.K., Long-Term Culture of Human Embryonic Stem Cells in Feeder-Free Conditions, Dev. Dyn., 2004, vol. 229, pp. 259–274.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, L., Gutierrez-Aranda, I., Ligero, G., Martin, M., Ayllón, V., Real, P.J., Ramos-Mejía, V., Bueno, C., and Menendez, P., Maintenance of HESCs in Media Conditioned by Human Mesenchymal Stem Cells Obviates the Requirement of Exogenous bFGF Supplementation, Tissue Eng. Part C Methods, 2012, vol. 18. pp. 387–396.

    Article  PubMed  CAS  Google Scholar 

  • Sarkadi, B., Orbán, T.I., Szaka-cs, G., Várady, G., Schamberger, A., Erdei, Z., Szebényi, K., Homolya, L., and Apáti, A., Evaluation of ABCG2 Expression in Human Embryonic Stem Cells: Crossing the Same River Twice?, Stem Cells, 2010, vol. 28, pp. 174–176.

    PubMed  CAS  Google Scholar 

  • Shaffer, L.G., Slovak, M.L., and Campbell, L.J., Eds., An International System for Human Cytogenetic Nomenclature (ISCN)/S, Basel: Karger, 2009.

    Google Scholar 

  • Stacey, G.N., Cobo, F., Nieto, A., Talavera, P., Healy, L., and Concha, A., The Development of ‘Feeder’ Cells for the Preparation of Clinical Grade hES Cell Lines: Challenges and Solutions, J. Biotechnol., 2006, vol. 125, pp. 583–588.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, D., Khaner, H., Cohen, M., Even-Ram, S., Gil, Y., Itsykson, P., Turetsky, T., Idelson, M., Aizenman, E., Ram, R., Berman-Zaken, Y., and Reubinoff, B., Derivation, Propagation and Controlled Differentiation of Human Embryonic Stem Cells in Suspension, Nat. Biotechnol., 2010, vol. 28, pp. 361–364.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, M.H., Bendall, S.C., and Bhatia, M., Deconstructing Human Embryonic Stem Cell Cultures: Niche Regulation of Self-Renewal and Pluripotency, J. Mol. Med. (Berl.), 2008, vol. 86, pp. 875–886.

    Article  Google Scholar 

  • Stewart, M.H., Boss, M., Chadwick, K., Menendez, P., Bendall, S.C., and Bhatia, M., Clonal Isolation of HESCs Reveals Heterogeneity within the Pluripotent Stem Cell Compartment, Nat. Methods, 2006, vol. 3, pp. 807–815.

    Article  PubMed  CAS  Google Scholar 

  • Stojkovic, P., Lako, M., Przyborski, S., Stewart, R., Armstrong, L., Evans, J., Zhang, X., and Stojkovic, M., Human-Serum Matrix Supports Undifferentiated Growth of Human Embryonic Stem Cells, Stem Cells, 2005a, vol. 23, pp. 895–902.

    Article  PubMed  CAS  Google Scholar 

  • Stojkovic, P., Lako, M., Stewart, R., Przyborski, S., Armstrong, L., Evans, J., Murdoch, A., Strachan, T., and Stojkovic, M., An Autogeneic Feeder Cell System that Efficiently Supports Growth of Undifferentiated Human Embryonic Stem Cells, Stem Cells, 2005, vol. 23, pp. 306–314.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M., Embryonic Stem Cell Lines Derived from Human Blastocysts, Science, 1998, vol. 282, pp. 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Tiger, C.-F., Champliaud, M.-F., Pedrosa-Domellof, F., Thornell, L.-E., Ekblom, P., and Gullberg, D., Presence of Laminin a5 Chain and Lack of Laminin a1 Chain during Human Muscle Development and in Muscular Dystrophies, J. Biol. Chem., 1997, vol. 272, pp. 28590–28595.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, Z.Y., Singh, S., Yu, S.L., Chou, C.H., and Li, S.S., A Feeder-Free Culture Using Autogeneic Conditioned Medium for Undifferentiated Growth of Human Embryonic Stem Cells: Comparative Expression Profiles of mRNAs, MicroRNAs and Proteins among Different Feeders and Conditioned Media, BMC Cell Biol., 2010, vol. 11, p. 76.

    Article  PubMed  Google Scholar 

  • Tsutsui, H., Valamehr, B., Hindoyan, A., Qiao, R., Ding, X., Guo, S., Witte, O.N., Liu, X., Ho, C.M., and Wu, H., An Optimized Small Molecule Inhibitor Cocktail Supports Long-Term Maintenance of Human Embryonic Stem Cells, Nat. Commun., 2011, vol. 2, p. 167.

    Article  PubMed  Google Scholar 

  • Ueda, Y., Fujita, S., Nishigaki, T., Arima, Y., and Iwata, H., Substrates for Human Pluripotent Stem Cell Cultures in Conditioned Medium of Mesenchymal Stem Cells, J. Biomater. Sci. Polym. Ed., 2012, vol. 23, pp. 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Valamehr, B., Tsutsui, H., Ho, C.M., and Wu, H., Developing Defined Culture Systems for Human Pluripotent Stem Cells, Regen. Med., 2011, vol. 6, pp. 623–634.

    Article  PubMed  Google Scholar 

  • Vallier, L., Alexander, M., and Pedersen, R.A., Activin/Nodal and FGF Pathways Cooperate to Maintain Pluripotency of Human Embryonic Stem Cells, J. Cell Sci., 2005, vol. 118, pp. 4495–4509.

    Article  PubMed  CAS  Google Scholar 

  • Vazin, T. and Freed, W.J., Human Embryonic Stem Cells: Derivation, Culture, and Differentiation: A Review, Restor. Neurol. Neurosci., 2010, vol. 28, pp. 589–603.

    PubMed  CAS  Google Scholar 

  • Villa-Diaz, L.G., Nandivada, H., Ding, J., Nogueira-de-Souza, N.C., Krebsbach, P.H., O’shea, K.S., Lahann, J., and Smith, G.D., Synthetic Polymer Coatings for Long-Term Growth of Human Embryonic Stem Cells, Nat. Biotechnol., 2010, vol. 28, pp. 581–583.

    Article  PubMed  CAS  Google Scholar 

  • Vuoristo, S., Virtanen, I., Takkunen, M., Palgi, J., Kikkawa, Y., Rousselle, P., Sekiguchi, K., Tuuri, T., and Otonkoski, T., Laminin Isoforms in Human Embryonic Stem Cells: Synthesis, Receptor Usage and Growth Support, J. Cell Mol. Med., 2009, vol. 13, pp. 2622–2633.

    Article  PubMed  Google Scholar 

  • Wang, G., Zhang, H., Zhao, Y., Li, J., Cai, J., Wang, P., Meng, S., Feng, J., Miao, C., Ding, M., Li, D., and Deng, H., Noggin and bFGF Cooperate to Maintain the Pluripotency of Human Embryonic Stem Cells in the Absence of Feeder Layers, Biochem. Biophys. Res. Commun., 2005, vol. 330, pp. 934–942.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Mou, X., Cao, H., Meng, Q., Ma, Y., Han, P., Jiang, J., Zhang, H., and Ma, Y., A Novel Xeno-Free and Feeder-Cell-Free System for Human Pluripotent Stem Cell Culture, Protein Cell, 2012, vol. 3, pp. 51–59.

    Article  PubMed  Google Scholar 

  • Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., and Carpenter, M.K., Feeder-Free Growth of Undifferentiated Human Embryonic Stem Cells, Nat. Biotechnol., 2001, vol. 19, pp. 971–974.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C., Rosler, E., Jiang, J., Lebkowski, J.S., Gold, J.D., O’sullivan, C., Delavan-Boorsma, K., Mok, M., Bronstein, A., and Carpenter, M.K., Basic Fibroblast Growth Factor Supports Undifferentiated Human Embryonic Stem Cell Growth without Conditioned Medium, Stem Cells, 2005, vol. 23, pp. 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Xu, R.H., Peck, R.M., Li, D.S., Feng, X., Ludwig, T., and Thomson, J.A., Basic FGF and Suppression of BMP Signaling Sustain Undifferentiated Proliferation of Human ES Cells, Nat. Methods, 2005, vol. 2, pp. 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, S.J., Yoon, B.S., Kim, J.M., Song, J.M., Roh, S., You, S., and Yoon, H.S., Efficient Culture System for Human Embryonic Stem Cells Using Autologous Human Embryonic Stem Cell-Derived Feeder Cells, Exp. Mol. Med., 2005, vol. 37, pp. 399–407.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Poljanskaya.

Additional information

Original Russian Text © A.M. Koltsova, I.V. Voronkina, O.F. Gordeeva, V.V. Zenin, N.V. Lifantseva, A.S. Musorina, L.V. Smagina, T.K. Jakovleva, G.G. Poljanskaya, 2012, published in Tsitologiya, 2012, Vol. 54, No. 8, pp. 637–652.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koltsova, A.M., Voronkina, I.V., Gordeeva, O.F. et al. A novel feeder-free system for human embryonic stem cells and characterization of their sublines with autogenic and allogenic cultivation. Cell Tiss. Biol. 7, 1–14 (2013). https://doi.org/10.1134/S1990519X13010094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X13010094

Keywords

Navigation