Skip to main content
Log in

Fluorescent semiconductor nanocrystals in microscopy and flow cytometry

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Quantum dots nanocrystals (Qdots or QDs), consisting of a CdSe core with a ZnS shell, are a novel class of fluorochromes with significant advantages over traditional organic fluorochromes and fluorescent proteins. QDs have a large extinction coefficient, high photostability, wide absorption and narrow emission spectra, and large Stokes shifts. These features make them desirable for both microscopy and flow cytometry. Applications of QD-conjugates with antibodies, streptavidin, and DNA or RNA probes have made it possible to produce highly stable multicolor specimens useful for scientific and diagnostic purposes. The current review describes the achievements in preparation of multicolor specimens based on QD-conjugates for microscopy and flow cytometry and outlines the requirements for microscope and flow cytometer reengineering for successful analysis of these specimens. However, despite considerable progress, two of the obstacles that preclude wider use of QDs include some of their chemical properties and the large size of QD-conjugates. Difficulties in the application of QDs are similar whether commercial or custom-made conjugates are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovin serum albumin

DAPI:

4,6-diamidino-2-phenylindoldihydrochlodid

FISH:

fluorescent in situ hybridization

FITS:

fluorescent isothiocyanat

GFP:

green fluorescent protein

IR:

infrared

TOPO:

trioctylphosphinoxid

UV:

ultraviolet

References

  • Abrams, B., and Dubrovsky, T., Quantum Dots in Flow Cytometry, in Methods in Molecular Biology, New York: Humana Press, 2007, vol. 374, pp. 185–203.

    Google Scholar 

  • Akhtar, R.S., Latham, C.B., Siniscalco, D., Fuccio, C., and Roth, K.A., Immunohistochemical Detection with Quantum Dots, in Methods in Molecular Biology, New York: Humana Press, 2007, vol. 374, pp. 11–28.

    Google Scholar 

  • Alivasatos, A.P., Gu, W., and Larabell, C., Quantum Dots as Cellular Probes, Ann. Rev. Biomed. Eng., 2005, vol. 7, pp. 55–76.

    Article  Google Scholar 

  • Banin, U., Bruchez, M., Alivasatos, A.P., Ha, T., Weiss, S., and Chemla, D.S., Evidence for a Thermal Contribution to Emission Intermittency in Single CdSe/CdS Core/shell Nanocrystals, J. Chem. Phys., 1999, vol. 110, pp. 1195–1201.

    Article  CAS  Google Scholar 

  • Barteneva, N., and Vorobjev, I., The Development of Multicolor Panels with Quantum Dots-Conjugated Antibodies for Diagnostics of Chronic Lymphoid Leukemia (CLL) by Conventional Flow Cytometer, Nanotechnology (Nanotech-NSTI Proceedings), 2009, vol. 2, pp. 26–28.

    CAS  Google Scholar 

  • Baschong, W., Suetterlin, R., and Laeng, R.H., Control of Autofluorescence of Archival Formaldehyde-Fixed, Paraffin-Embedded Tissue in Confocal Laser Scanning Microscopy, J. Histochem Cytochem., 2001, vol. 49, pp. 1565–1572.

    Article  PubMed  CAS  Google Scholar 

  • Bentolila, L.A., and Weiss, S., Single-step Multicolor Fluorescence in situ Hybridization using Semiconductor Quantum Dot-DNA Conjugates, Cell Biochem. Biophys., 2006, vol. 45, pp. 59–70.

    Article  PubMed  CAS  Google Scholar 

  • Biju, V., Itoh, T., Anas, A., Sujith, A., and Ishikawa, M.., Semiconductor Quantum dots and Metal Nanoparticles: Syntheses, Optical Properties, and Biological Applications, Anal. Bioanal. Chem., 2008, vol. 391, pp. 2469–2495.

    Article  PubMed  CAS  Google Scholar 

  • Bodo, J., Durkin, L., and Hsi, E.D., Quantitative in situ Detection of Phosphoproteins in Fixed Tissues Using Quantum Dot Technology, J Histochem. Cytochem., 2009, vol. 57, pp. 701–708.

    Article  PubMed  CAS  Google Scholar 

  • Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., Semiconductor Nanocrystals as Fluorescent Biological Labels, Science, 1998, vol. 281, pp. 2013–2016.

    Article  PubMed  CAS  Google Scholar 

  • Byers, R.J., Di, Vizzio, D., O’Connell, F., Thoulouli, E., Levenson, R.M., Gossard, K., Twomey, D., Yang, Y., Benedettini, E., Rose, J., Ligon, K.L., Finn, S.P., Golub, T.R., and Loda, M., Semiautomated Multiplexed Quantum-Dot Based in situ Hybridization and Spectral Deconvolution, J. Mol. Diagn., 2007, vol. 9, pp. 20–29.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, M.L., Moffitt, R.A., Liu, J., Parry, M., Sharma, Y., and Wang, M.D., Simple Quantification of Multiplexed Quantum dot Staining in Clinical Tissue Samples, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2008, vol. 2008, pp. 1907–1910.

    PubMed  Google Scholar 

  • Chan, P., Yen, T., Frederique, R., Gonzalez-Maeso, J., and Sealfon, S.C., Method for Multiplex Cellular Detection of mRNAs using Quantum dot Fluorescence in situ Hybridization, Nucleic Acid Res, 2005, vol. 33, pp. e161–e166.

    Article  PubMed  Google Scholar 

  • Chattopadhyay, P., Perfetto, S.P., Yu, J., and Roederer, M., The Use of Quantum Dot Nanocrystals in Multicolor flow Cytometry, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, vol. 2, pp. 334–348.

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay, P.K., Price, D.A., Harper, T.F., Betts, M.R., Yu, J., Gostick, E., Perfetto, S.P., Goepfert, P., Koup, R.A., De, Rosa, S.C., Bruchez, M.P., and Roederer, M., Quantum Dot Semiconductor Nanocrystals for Immunophenotyping by Polychromatic Flow Cytometry, Nature Med., 2006, vol. 12, pp. 972–977.

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay, P.K., Yu, J., and Roederer, M., Application of Quantum Dots to Multicolor Flow Cytometry, in Methods in Molecular Biology, New York: Humana Press, 2007, vol. 374, pp. 175–184.

    Google Scholar 

  • Chen, H., Xue, J., Zhang, Y., Zhu, X., Gao, J., and Yu, B., Comparison of Quantum dots Immunofluorescence Histochemistry and Conventional Immunohistochemistry for the Detection of Caveolin-1 and PCNA in the Lung Cancer Tissue Microarray, J. Mol. Hist., 2009, vol. 40, pp. 261–268.

    Article  CAS  Google Scholar 

  • Chen, Y., Vela, J., Htoon, H., Casson, J.L., Werder, D.J., Bussian, D.A., Klimov, V.I., and Hollingsworth, J.A., “Giant” Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking, J. Am. Chem. Soc., 2008, vol. 130, pp. 5026–5027.

    Article  PubMed  CAS  Google Scholar 

  • Clapp, A.R., Medintz, I.L., Mauro, J.M., Fisher, B.R., Bawendi, M.G., and Mattoussi, H., Fluorescence Resonance Energy Transfer between Quantum dots Donors and Dye-Labeled Protein Acceptors, J. Am. Chem. Soc., 2004, vol. 126, pp. 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Dabbousi, B.O., Rodriguez, Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G., (CdSe)ZnS Core-shell Quantum Dots: Synthesis and Optical and Structural Characterization of a Size Series of Highly Luminescent Materials, J. Phys. Chem., 1997, vol. B 101, pp. 9463–9475.

    Google Scholar 

  • Danek, M., Jensen, K.F., Murray, C.B., and Bawendi, M.G., Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum dots Passivated with an Overlayer of ZnSe, Chem. Matter., 1996, vol. 8, pp. 173–180.

    Article  CAS  Google Scholar 

  • Deerinck, T.J., Giepmans, B.N.G., Smarr, B.L., Martone, M.E., and Ellisman, M.H., Light and Electron Microscopic Localization of Multiple Proteins using Quantum Dots, in Methods in Molecular Biology, New York: Humana Press, 2007, vol. 374, pp. 43–53.

    Google Scholar 

  • Deerinck, T.J., The Application of Fluorescent Quantum Dots to Confocal, Multiphoton, and Electron Microscopic Imaging, Toxicol. Pathol., 2008, vol. 36, pp. 112–116.

    Article  PubMed  CAS  Google Scholar 

  • Ferri, G.L., Gaudio, R.M., Castello, I.F., Berger, P., and Giro, G., Quadruple Immunofluorescence: A Direct Visualization Method, J. Histochem. Cytochem., 1997, vol. 45, pp. 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Fountaine, T.J., Wincovitch, S.M., Geho, D.H., Garfield, S.H., and Pittaluga, S., Multispectral Imaging of Clinically Relevant Cellular Targets in Tonsil and Lymphoid Tissue using Semiconductor Quantum Dots, Modern Pathology, 2006, vol. 19, pp. 1181–1191.

    Article  PubMed  CAS  Google Scholar 

  • Giepmans, B.N., Deerinck, T.J., Smarr, B.L., Jones, Y.Z., and Ellisman, M.H., Correlated Light and Electron Microscopic Imaging of Multiple Endogenous Proteins using Quantum Dots, Nature Methods, 2005, vol. 10, pp. 743–749.

    Article  Google Scholar 

  • Hadrup, S.R., and Schumacher, T.N., MHC-Based Detection of Antigen-Specific CD8+ T Cell Responses, Cancer Immunol. Immunother., 2010, vol. 59, pp. 1425–1433.

    Article  PubMed  CAS  Google Scholar 

  • Hadrup, S.R., Bakker, A.H., Shu, C.J., Andersen, R.S., van, Veluw, J., Hombrink, P., Castermans, E., Thor, Straten, P., Blank, C., Haanen, J.B., Heemskerk, M.H., and Schumacher, T.N., Parallel Detection of Antigen-Specific T-Cell Responses by Multidimensional Encoding of MHC Multimers, Nature Methods, 2009, vol. 6, pp. 520–526.

    Article  PubMed  CAS  Google Scholar 

  • Oleinikov, V.A., Sukhanova, A.V., and Nabiev, I.R., Fluorescent Semiconductor Nanocrystals in Biology and Medicine, Ross. Nanotekhnol., 2007, vol. 2, no. 2, pp. 160–173. (russ.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.A. Vorobjev, E.P. Rafalovskaya-Orlovskaya, A.A. Gladkih, D.M. Potashnikova, N.S. Barteneva, 2011, published in Tsitologiya, Vol. 53, No. 5, 2011, pp. 392–403.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobjev, I.A., Rafalovskaya-Orlovskaya, E.P., Gladkih, A.A. et al. Fluorescent semiconductor nanocrystals in microscopy and flow cytometry. Cell Tiss. Biol. 5, 321–331 (2011). https://doi.org/10.1134/S1990519X11040134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X11040134

Keywords

Navigation