Skip to main content
Log in

Velocity Dispersion and H\(\boldsymbol{\alpha}\)-emission of Ionized Gas in Star-forming Regions

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

To understand the nature of gas flows in star-forming regions of nearby galaxies, the relationship between the surface brightness values in the H\(\alpha\) line and the velocity dispersion of ionized gas, known as the ‘‘surface brightness–velocity dispersion’’ diagram, is often used. Based on three-dimensional gas-dynamic calculations, we examined the evolution of synthetic diagrams for supershells formed as a result of multiple supernova explosions in a star cluster located in the galactic disk. Based on the results of a study of changes in the shape and structure of the diagram depending on the gas density, its metallicity, and the disk scale height, it is possible to identify ranges of values in the diagram that are characteristic of young bubbles developing in dense or rarefied gas at large heights above the plane of the disk. We found that the structure of the diagram depends on the age of the supershells and the physical properties of the gas in the disk. For nearby dwarf galaxies, the structure of the observed ‘‘surface brightness–velocity dispersion’’ diagrams can only be explained by describing the dynamics of bubbles formed by multiple SN explosions in small star clusters of different ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. The intensity from the unperturbed part of the disk presents a uniform background with rather low intensity values, as shown by the white part of the color scale in panel (a). Vertical velocities in the undisturbed disk are practically absent, their dispersion is close to zero (see panel (b)).

  2. The cross-shaped structures in the central part are a manifestation of the well-known numerical instability from recent SN explosions (Quirk, 1994); at the considered moment in time, their relative contribution to the total surface is several percent, and in the future it will rapidly decrease.

REFERENCES

  1. S. M. Andrews, D. M. Meyer, and J. T. Lauroesch, Astrophys. J. 552 (1), L73 (2001). https://doi.org/10.1086/320267

    Article  ADS  Google Scholar 

  2. I. Bagetakos, E. Brinks, F. Walter, et al., Astron. J. 141 (1), article id. 23 (2011). https://doi.org/10.1088/0004-6256/141/1/23

  3. E. L. O. Bakes and A. G. G. M. Tielens, Astrophys. J. 427, 822 (1994). https://doi.org/10.1086/174188

    Article  ADS  Google Scholar 

  4. V. Bordalo, H. Plana, and E. Telles, Astrophys. J. 696 (2), 1668 (2009). https://doi.org/10.1088/0004-637X/696/2/1668

    Article  ADS  Google Scholar 

  5. J. Castor, R. McCray, and R. Weaver, Astrophys. J. 200, L107 (1975). https://doi.org/10.1086/181908

    Article  ADS  Google Scholar 

  6. M. A. de Avillez, Monthly Notices Royal Astron. Soc. 315 (3), 479 (2000). https://doi.org/10.1046/j.1365-8711.2000.03464.x

    Article  ADS  Google Scholar 

  7. M. A. de Avillez and M.-M. Mac Low, Astrophys. J. 581 (2), 1047 (2002). https://doi.org/10.1086/344256

    Article  ADS  Google Scholar 

  8. A. De Cia, E. B. Jenkins, A. J. Fox, et al., Nature 597 (7875), 206 (2021). https://doi.org/10.1038/s41586-021-03780-0

    Article  ADS  Google Scholar 

  9. O. V. Egorov, K. Kreckel, S. C. O. Glover, et al., Astron. and Astrophys. 678, id. A153 (2023). https://doi.org/10.1051/0004-6361/202346919

  10. O. V. Egorov, T. A. Lozinskaya, A. V. Moiseev, and Y. A. Shchekinov, Monthly Notices Royal Astron. Soc. 464 (2), 1833 (2017). https://doi.org/10.1093/mnras/stw2367

    Article  ADS  Google Scholar 

  11. O. V. Egorov, T. A. Lozinskaya, A. V. Moiseev, and G. V. Smirnov-Pinchukov, Monthly Notices Royal Astron. Soc. 444 (1), 376 (2014). https://doi.org/10.1093/mnras/stu1369

    Article  ADS  Google Scholar 

  12. O. V. Egorov, T. A. Lozinskaya, K. I. Vasiliev, et al., Monthly Notices Royal Astron. Soc. 508 (2), 2650 (2021). https://doi.org/10.1093/mnras/stab2710

    Article  ADS  Google Scholar 

  13. D. Fielding, E. Quataert, and D. Martizzi, Monthly Notices Royal Astron. Soc. 481 (3), 3325 (2018). https://doi.org/10.1093/mnras/sty2466

    Article  ADS  Google Scholar 

  14. A. S. Hill, M. R. Joung, M.-M. Mac Low, et al., Astrophys. J. 750 (2), article id. 104 (2012). https://doi.org/10.1088/0004-637X/750/2/104

  15. I. Iben, Stellar Evolution Physics, Physical Processes in Stellar Interiors, vol. 1 (Cambridge University Press, Cambridge, 2012). https://doi.org/10.1017/CBO9781139061223

    Book  Google Scholar 

  16. C. Klingenberg, W. Schmidt, and K. Waagan, Journal of Computational Physics 227 (1), 12 (2007). https://doi.org/10.1016/j.jcp.2007.07.034

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Li, G. L. Bryan, and J. P. Ostriker, Astrophys. J. 841 (2), article id. 101 (2017). https://doi.org/10.3847/1538-4357/aa7263

  18. C. López-Cobá, S. F. Sánchez, A. V. Moiseev, et al., Monthly Notices Royal Astron. Soc. 467 (4), 4951 (2017). https://doi.org/10.1093/mnras/stw3355

    Article  ADS  Google Scholar 

  19. M.-M. Mac Low and R. McCray, Astrophys. J. 324, 776 (1988). https://doi.org/10.1086/165936

    Article  ADS  Google Scholar 

  20. I. Martínez-Delgado, G. Tenorio-Tagle, C. Muñoz-Tuñón, et al., Astron. J. 133 (6), 2892 (2007). https://doi.org/10.1086/515438

  21. A. V. Moiseev and T. A. Lozinskaya, Monthly Notices Royal Astron. Soc. 423 (2), 1831 (2012). https://doi.org/10.1111/j.1365-2966.2012.21005.x

    Article  ADS  Google Scholar 

  22. A. V. Moiseev, S. A. Pustilnik, and A. Y. Kniazev, Monthly Notices Royal Astron. Soc. 405 (4), 2453 (2010). https://doi.org/10.1111/j.1365-2966.2010.16621.x

    Article  ADS  Google Scholar 

  23. C. Munoz-Tunon, G. Tenorio-Tagle, H. O. Castaneda, and R. Terlevich, Astron. J. 112, 1636 (1996). https://doi.org/10.1086/118129

    Article  ADS  Google Scholar 

  24. S. Nasoudi-Shoar, P. Richter, K. S. de Boer, and B. P. Wakker, Astron. and Astrophys. 520, id. A26 (2010). https://doi.org/10.1051/0004-6361/200913454

  25. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490 (2), 493 (1997). https://doi.org/10.1086/304888

    Article  ADS  Google Scholar 

  26. D. Puche, D. Westpfahl, E. Brinks, and J.-R. Roy, Astron. J. 103, 1841 (1992). https://doi.org/10.1086/116199

    Article  ADS  Google Scholar 

  27. J. J. Quirk, International Journal for Numerical Methods in Fluids 18 (6), 555 (1994). https://doi.org/10.1002/fld.1650180603

    Article  ADS  MathSciNet  Google Scholar 

  28. F. J. Sánchez-Salcedo, A. M. Hidalgo-Gámez, and E. E. Martínez-García, Revista Mexicana Astronom. 50, 225 (2014). https://doi.org/10.48550/arXiv.1405.2983

  29. G. V. Smirnov-Pinchukov and O. V. Egorov, Astrophysical Bulletin 76 (4), 367 (2021). https://doi.org/10.1134/S1990341321040131

    Article  ADS  Google Scholar 

  30. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics—A Practical Introduction (Springer Berlin, Heidelberg, 1999). https://doi.org/10.1007/978-3-662-03915-1

    Book  Google Scholar 

  31. E. O. Vasiliev, Monthly Notices Royal Astron. Soc. 414 (4), 3145 (2011). https://doi.org/10.1111/j.1365-2966.2011.18623.x

    Article  ADS  Google Scholar 

  32. E. O. Vasiliev, Monthly Notices Royal Astron. Soc. 431 (1), 638 (2013). https://doi.org/10.1093/mnras/stt189

    Article  ADS  Google Scholar 

  33. E. O. Vasiliev, A. V. Moiseev, and Y. A. Shchekinov, Baltic Astronomy 24, 213 (2015). https://doi.org/10.1515/astro-2017-0222

    Article  ADS  Google Scholar 

  34. E. O. Vasiliev and Y. A. Shchekinov, Astrophysical Bulletin 77 (1), 51 (2022). https://doi.org/10.1134/S1990341322010114

    Article  ADS  Google Scholar 

  35. E. O. Vasiliev, Y. A. Shchekinov, and B. B. Nath, Monthly Notices Royal Astron. Soc. 468 (3), 2757 (2017). https://doi.org/10.1093/mnras/stx719

    Article  ADS  Google Scholar 

  36. E. O. Vasiliev, Y. A. Shchekinov, and B. B. Nath, Monthly Notices Royal Astron. Soc. 486 (3), 3685 (2019). https://doi.org/10.1093/mnras/stz1099

    Article  ADS  Google Scholar 

  37. S. Walch, P. Girichidis, T. Naab, et al., Monthly Notices Royal Astron. Soc. 454 (1), 238 (2015). https://doi.org/10.1093/mnras/stv1975

    Article  ADS  Google Scholar 

  38. F. Walter and E. Brinks, Astron. J. 118 (1), 273 (1999). https://doi.org/10.1086/300906

    Article  ADS  Google Scholar 

  39. D. R. Weisz, E. D. Skillman, J. M. Cannon, et al., Astrophys. J. 704 (2), 1538 (2009). https://doi.org/10.1088/0004-637X/704/2/1538

    Article  ADS  Google Scholar 

  40. H. Yang, Y.-H. Chu, E. D. Skillman, and R. Terlevich, Astron. J. 112, 146 (1996). https://doi.org/10.1086/117995

Download references

ACKNOWLEDGEMENTS

The authors are grateful to O.V. Egorov and A.V. Moiseev for numerous discussions and valuable clarifications.

Funding

This work was supported by ongoing institutional funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Vasiliev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, E.O., Shchekinov, Y.A. Velocity Dispersion and H\(\boldsymbol{\alpha}\)-emission of Ionized Gas in Star-forming Regions. Astrophys. Bull. 79, 60–70 (2024). https://doi.org/10.1134/S1990341323600242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323600242

Keywords:

Navigation