Skip to main content
Log in

On the Possibility of Direct Detection of the Emission of Microlens MOA-2011-BLG-191/OGLE-2011-BLG-0462—a Probable Black Hole

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—We discuss the observational manifestations of an isolated stellar mass black hole—the recently discovered microlens MOA-2011-BLG-191/OGLE-2011-BLG-0462. The data available for this object are used to calculate the density, temperature, and sound speed in its local interstellar medium, as well as estimate its velocity. We obtain the accretion rate and luminosity of the object, and construct its theoretical spectrum. A comparison of the spectrum with the sensitivity levels of current and future instruments in different frequency ranges has shown that direct detection of the emission from this black hole is possible for several future observing missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Astrophys. J. 818 (2), id. L22 (2016a).

  2. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Physical Review X 6 (4), id. 041015 (2016b).

  3. E. Agol and M. Kamionkowski,Monthly Notices Royal Astron. Soc. 334 (3), 553 (2002).

    Article  ADS  Google Scholar 

  4. K. Akiyama et al. (Event Horizon Telescope Collab.), Astrophys. J. 875 (1), id. L1 (2019a).

  5. K. Akiyama et al. (Event Horizon Telescope Collab.), Astrophys. J. 875 (1), id. L2 (2019b).

  6. M. V. Barkov, D. V. Khangulyan, and S. B. Popov, Monthly Notices Royal Astron. Soc. 427 (1), 589 (2012).

    Article  ADS  Google Scholar 

  7. G. Beskin, A. Biryukov, S. Karpov, et al., Advances in Space Research 42 (3), 523 (2008).

    Article  ADS  Google Scholar 

  8. G. M. Beskin and S. V. Karpov, Astron. and Astrophys. 440 (1), 223 (2005).

    Article  ADS  Google Scholar 

  9. G. S. Bisnovatyi-Kogan and A. A. Ruzmaikin, Astrophys. and Space Sci. 28 (1), 45 (1974).

    Article  ADS  Google Scholar 

  10. N. G. Bochkarev, in Stars and star systems. The interstellar medium and star formation (Moscow, Izdatel’stvo Nauka, 1981) pp. 265–325 [in Russian].

    Google Scholar 

  11. H. Bondi, Monthly Notices Royal Astron. Soc. 112, 195 (1952).

    Article  ADS  Google Scholar 

  12. H. Bondi and F. Hoyle,Monthly Notices Royal Astron. Soc. 104, 273 (1944).

    Article  ADS  Google Scholar 

  13. E. G. Chmyreva, G. M. Beskin, and A. V. Biryukov, Astronomy Letters 36 (2), 116 (2010).

    Article  ADS  Google Scholar 

  14. L. Chmyreva and G.M. Beskin, Astrophysical Bulletin 77 (1), 65 (2022).

    Article  ADS  Google Scholar 

  15. L. Dressel, in WFC3 Instrument Handbook for Cycle 30, Version 14.0 (Space Telescope Science Inst., Baltimore, 2022), p. 14.

    Google Scholar 

  16. I. G. Dymnikova, Uspekhi Fizicheskikh Nauk 148 (3), 393 (1986).

    Article  ADS  Google Scholar 

  17. I. N. Evans, F. A. Primini, K. J. Glotfelty, et al., Astrophys. J. Suppl. 189 (1), 37 (2010).

    Article  ADS  Google Scholar 

  18. P. A. Evans, K. L. Page, J. P. Osborne, et al., Astrophys. J. Suppl. 247 (2), id. 54 (2020).

  19. R. P. Fender, T. J. Maccarone, and I. Heywood, Monthly Notices Royal Astron. Soc. 430 (3), 1538 (2013).

    Article  ADS  Google Scholar 

  20. G. M. Green, E. Schlafly, C. Zucker, et al., Astrophys. J. 887 (1), id. 93 (2019).

  21. T. Güver and F. Özel, Monthly Notices Royal Astron. Soc. 400 (4), 2050 (2009).

  22. J. R. Ipser and R. H. Price, Astrophys. J. 255, 654 (1982).

    Article  ADS  Google Scholar 

  23. P. B. Ivanov, V. N. Lukash, S. V. Pilipenko, and M. S. Pshirkov, Monthly Notices Royal Astron. Soc. 489 (2), 2038 (2019).

    Article  ADS  Google Scholar 

  24. W. J. Kaufmann, The cosmic frontiers of general relativity (Mir, Moskva, 1981) [Translated from the English edition].

  25. C. Y. Lam, J. R. Lu, A. Udalski, et al., arXiv e-prints astro/ph:2202.01903 (2022).

  26. V. M. Lipunov, Astrophysics of Neutron Stars, XIII (Springer-Verlag, Berlin Heidelberg New York, 1992).

    Book  Google Scholar 

  27. J. R. Lu, E. Sinukoff, E. O. Ofek, et al., Astrophys. J. 830 (1), id. 41 (2016).

  28. T. J. Maccarone, Monthly Notices Royal Astron. Soc. 360 (1), L30 (2005).

    Article  ADS  Google Scholar 

  29. P.Meszaros, Astron. and Astrophys. 44 (1), 59 (1975).

    ADS  Google Scholar 

  30. R. M. Plotkin, S. F. Anderson, W. N. Brandt, et al., Astron. J. 139 (2), 390 (2010).

    Article  ADS  Google Scholar 

  31. P. Predehl, R. Andritschke, V. Arefiev, et al., Astron. and Astrophys. 647, id. A1 (2021).

  32. G. B. Rybicki and A. P. Lightman, Radiative processes in astrophysics (Wiley, New York, 1979).

    Google Scholar 

  33. K. C. Sahu, J. Anderson, S. Casertano, et al., arXiv e‑prints astro/ph:2201.13296 (2022).

  34. F. Scarcella, D. Gaggero, R. Connors, et al., Monthly Notices Royal Astron. Soc. 505 (3), 4036 (2021).

    Article  ADS  Google Scholar 

  35. V. F. Shvartsman, Sov. Astron. 15, 377 (1971).

    ADS  Google Scholar 

  36. V. F. Shvartsman, Soobshcheniya Spetsial’noj Astrofizicheskoj Observatorii 19, 5 (1977).

    ADS  Google Scholar 

  37. V. F. Shvartsman, G. M. Beskin, and S. N. Mitronova, Soviet Astronomy Lett. 15, 145 (1989a).

    ADS  Google Scholar 

  38. V. F. Shvartsman, G. M. Beskin, and S. A. Pustil’nik, Astrofizika 31, 457 (1989b).

    ADS  Google Scholar 

  39. D. Tsuna and N. Kawanaka, Monthly Notices Royal Astron. Soc. 488 (2), 2099 (2019).

    Article  ADS  Google Scholar 

  40. D. Tsuna, N. Kawanaka, and T. Totani, Monthly Notices Royal Astron. Soc. 477 (1), 791 (2018).

    Article  ADS  Google Scholar 

  41. N. A. Webb, M. Coriat, I. Traulsen, et al., Astron. and Astrophys. 641, id. A136 (2020).

  42. G. Wiktorowicz, Ł. Wyrzykowski, M. Chruslinska, et al., Astrophys. J. 885 (1), id. 1 (2019).

  43. R. A. Windhorst, S. H. Cohen, N. P. Hathi, et al., Astrophys. J. Suppl. 193 (2), id. 27 (2011).

  44. G. Zasowski, B. Ménard, D. Bizyaev, et al., Astrophys. J. 798 (1), id. 35 (2015).

Download references

Funding

This work was performed within the grant number 075-15-2022-262 of the Ministry of science and higher education of the Russian Federation (13.MNPMU.21.0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Chmyreva.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by L. Chmyreva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chmyreva, L., Beskin, G.M. On the Possibility of Direct Detection of the Emission of Microlens MOA-2011-BLG-191/OGLE-2011-BLG-0462—a Probable Black Hole. Astrophys. Bull. 77, 223–230 (2022). https://doi.org/10.1134/S199034132203004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034132203004X

Keywords:

Navigation