Skip to main content
Log in

New Version of the Pulsating Photospheres Method: Multiphase Temprature Measurements of Cepheids

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We propose a new version of the (Baade–Becker–Wesselink) pulsating photospheres method based on direct spectral measurements of the effective temperatures of Cepheids carried out in different pulsation phases. By comparing the effective temperatures calculated using normal color calibrations with real spectroscopic estimates, we were able to not only determine the color excess with an accuracy of the order of \(0\mathop .\limits^{\text{m}} 01\) mag, but also use all the measured effective temperature values to derive a new color calibration for the effective temperature of high luminosity stars, also taking into account the differences in metallicity \({\text{[Fe/H}}]\) and surface gravity \(\log {\kern 1pt} g\): log Teff = 3.88 – 0.20(BV)0 + 0.026(BV)\(_{0}^{2}\) + 0.009log g – 0.010(BV)0log g – 0.051[Fe/H] + 0.051(BV)0[Fe/H], the relative accuracy of which is approximately \(1.1\% \). In addition, the complete identity of the two main versions of the Baade–Becker–Wesselink method was proved: the surface brightness method (SB), first proposed by Barnes and Evans in 1976, and the maximum likelihood method (or light-curve modeling method) proposed by Balona in 1977 and later improved by Rastorguev and Dambis in 2010. This approach consists of using significantly nonlinear color calibrations for \(\log {{T}_{{{\text{eff}}}}}\) and bolometric correction \(BC\) and is easily applicable to the surface brightness method. This method is also applicable in studies of other types of pulsating variable stars, e.g., RR Lyrae, Mirae and \(\delta \) Sct type variables with known effective temperature estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. D. An, D. M. Terndrup, and M. H. Pinsonneault, Astrophys. J. 671 (2), 1640 (2007).

    Article  ADS  Google Scholar 

  2. S. M. Andrievsky, R. E. Luck, and V. V. Kovtyukh, Astron. J. 130 (4), 1880 (2005).

    Article  ADS  Google Scholar 

  3. F. Arenou and X. Luri, ASP Conf. Ser. 167, 13 (1999).

  4. W. Baade, Astronomische Nachrichten 228 (20), 359 (1926).

    Article  ADS  Google Scholar 

  5. L. A. Balona, Monthly Notices Royal Astron. Soc. 178, 231 (1977).

    Article  ADS  Google Scholar 

  6. T. G. Barnes, III, J. Storm, W. H. Jefferys, et al., Astrophys. J. 631 (1), 572 (2005).

    Article  ADS  Google Scholar 

  7. T. G. Barnes and D. S. Evans, Monthly Notices Royal Astron. Soc. 174, 489 (1976).

    Article  ADS  Google Scholar 

  8. W. Becker, Zeitschrift für Astrophysik 19, 289 (1940).

    ADS  Google Scholar 

  9. L. N. Berdnikov, VizieR Online Data Catalog II/285 (2008).

  10. L. N. Berdnikov, O. V. Vozyakova, and A. K. Dambis, Astronomy Letters 22 (6), 839 (1996).

    ADS  Google Scholar 

  11. M. S. Bessell, F. Castelli, and B. Plez, Astron. and Astrophys. 333, 231 (1998).

    ADS  Google Scholar 

  12. A. Bressan, P. Marigo, L. Girardi, et al., Monthly Notices Royal Astron. Soc. 427 (1), 127 (2012).

    Article  ADS  Google Scholar 

  13. G. A. Brown et al. (Gaia Collab.) Astron. and Astrophys. 616, id. A1 (2018).

  14. G. A. Brown et al. (Gaia Collab.) Astron. and Astrophys. 649, id. A1 (2021).

  15. E. L. Fitzpatrick and D. Massa, Astrophys. J. 663 (1), 320 (2007).

    Article  ADS  Google Scholar 

  16. P. J. Flower, Astrophys. J. 469, 355 (1996).

    Article  ADS  Google Scholar 

  17. W. Gieren, J. Storm, P. Konorski, et al., Astron. and Astrophys. 620, id. A99 (2018).

  18. N. A. Gorynya, T. R. Irsmambetova, A. S. Rastorgouev, and N. N. Samus, Sov. Astron. Lett. 18, 316 (1992).

    ADS  Google Scholar 

  19. N. A. Gorynya, N. N. Samus’, A. S. Rastorguev, and M. E. Sachkov, Astronomy Letters 22 (2), 175 (1996).

    ADS  Google Scholar 

  20. N. A. Gorynya, N. N. Samus’, M. E. Sachkov, et al., Astronomy Letters 24 (6), 815 (1998).

    ADS  Google Scholar 

  21. N. A. Gorynya, N. N. Samus, M. E. Sachkov, et al., VizieR Online Data Catalog III/229 (2002).

  22. D. F. Gray and K. Brown, 113, 723 (2001).

  23. M. A. T. Groenewegen, Astron. and Astrophys. 474 (3), 975 (2007).

    Article  ADS  Google Scholar 

  24. M. A. T. Groenewegen, Astron. and Astrophys. 619, id. A8 (2018).

  25. V. V. Kovtyukh, S. M. Andrievsky, S. I. Belik, and R. E. Luck, Astron. J. 129 (1), 433 (2005).

    Article  ADS  Google Scholar 

  26. V. V. Kovtyukh, C. Soubiran, R. E. Luck, et al., Monthly Notices Royal Astron. Soc. 389 (3), 1336 (2008).

    Article  ADS  Google Scholar 

  27. Y. A. Lazovik and A. S. Rastorguev, Astron. J. 160 (3), id. 136 (2020).

  28. R. E. Luck, Astron. J. 156 (4), id. 171 (2018).

  29. R. E. Luck and S. M. Andrievsky, Astron. J. 128 (1), 343 (2004).

    Article  ADS  Google Scholar 

  30. R. E. Luck, S. M. Andrievsky, A. Fokin, and V. V. Kovtyukh, Astron. J. 136 (1), 98 (2008).

    Article  ADS  Google Scholar 

  31. R. Molinaro, V. Ripepi, M. Marconi, et al., Monthly Notices Royal Astron. Soc. 413 (2), 942 (2011).

    Article  ADS  Google Scholar 

  32. N. Nardetto, D. Mourard, P. Mathias, et al., Astron. and Astrophys. 471 (2), 661 (2007).

    Article  ADS  Google Scholar 

  33. A. S. Rastorguev and A. K. Dambis, Astrophysical Bulletin 66 (1), 47 (2011).

    Article  ADS  Google Scholar 

  34. S. Rastorguev, A. K. Dambis, M. V. Zabolotskikh, et al., Proc. IAU Symp. 289, 195 (2013).

  35. S. Rastorguev, Y. A. Lazovik, M. V. Zabolotskikh, et al., arXiv e-prints 1911.10413 (2019).

  36. G. Riess, S. Casertano, W. Yuan, et al., Astrophys. J. 908 (1), id. L6 (2021).

  37. V. Ripepi, G. Catanzaro, R. Molinaro, et al., Astron. and Astrophys. 642, id. A230 (2020).

  38. M. E. Sachkov, A. S. Rastorguev, N. N. Samus’, and N. A. Gorynya, Astronomy Letters 24 (3), 377 (1998).

    ADS  Google Scholar 

  39. J. Storm, B. W. Carney, W. P. Gieren, et al., Astron. and Astrophys. 415, 531 (2004).

    Article  ADS  Google Scholar 

  40. J. Storm, W. Gieren, P. Fouqué, et al., Astron. and Astrophys. 534, id. A94 (2011a).

  41. J. Storm, W. Gieren, P. Fouqué, et al., Astron. and Astrophys. 534, id. A95 (2011b).

  42. J. Storm, N. Nardetto, W. Gieren, et al., Astrophys. and Space Sci. 341 (1), 115 (2012).

    Article  ADS  Google Scholar 

  43. A. J. Wesselink, Bull. Astron. Inst. Netherlands 10, 91 (1946).

    ADS  Google Scholar 

Download references

Funding

The authors are grateful to the Russian Foundation for Basic Research for partial financial support of this work (RFBR, grant 19-02-00611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Rastorguev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by L. Chmyreva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastorguev, A.S., Zabolotskikh, M.V., Lazovik, Y.A. et al. New Version of the Pulsating Photospheres Method: Multiphase Temprature Measurements of Cepheids. Astrophys. Bull. 77, 144–149 (2022). https://doi.org/10.1134/S1990341322020079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341322020079

Keywords:

Navigation